Artículo

Graesser, J.; Stanimirova, R.; Tarrio, K.; Copati, E. J.; Volante, J. N.; Verón, S. R.; Banchero, S.; Elena, H.; Abelleyra, D. de & Friedl, M. A. (2022)"Temporally - consistent annual land cover from landsat time series in the southern cone of South America". Remote Sensing,14, (16),4005

Registro:

Documento:
Artículo
Título en inglés:
Temporally - consistent annual land cover from landsat time series in the southern cone of South America
Autor/es:
Graesser, Jordan; Stanimirova, Radost; Tarrio, Katelyn; Copati, Esteban Julián; Volante, José Norberto; Verón, Santiago Ramón; Banchero, Santiago; Elena, Hernán; Abelleyra, Diego de; Friedl, Mark A.
Filiación:
Graesser, Jordan. Boston University. Department of Earth and Environment. Boston, USA.
Stanimirova, Radost. Boston University. Department of Earth and Environment. Boston, USA.
Tarrio, Katelyn. Boston University. Department of Earth and Environment. Boston, USA.
Copati, Esteban Julián. Bolsa de Cereales. Buenos Aires, Argentina.
Volante, José Norberto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta (EEA Cerrillos). Salta, Argentina.
Verón, Santiago Ramón. Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.
Verón, Santiago Ramón. CONICET. Buenos Aires, Argentina.
Verón, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigación de Recursos Naturales (CIRN). Instituto de Clima y Agua. Castelar - Hurlingham, Buenos Aires, Argentina.
Banchero, Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigación de Recursos Naturales (CIRN). Instituto de Clima y Agua. Castelar - Hurlingham, Buenos Aires, Argentina.
Elena, Hernán. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta (EEA Cerrillos). Salta, Argentina.
Abelleyra, Diego de. Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigación de Recursos Naturales (CIRN). Instituto de Clima y Agua. Castelar - Hurlingham, Buenos Aires, Argentina.
Friedl, Mark A. Boston University. Department of Earth and Environment. Boston, USA.
Año:
2022
Título revista:
Remote Sensing
ISSN:
2072-4292
Volumen:
14
Número:
16
Páginas:
4005
Temas:
LANDSAT; TIME SERIES; LAND COVER; CONDITIONAL RANDOM FIELDS; SOUTHERN CONE
Idioma:
Inglés
URL al Editor:

Resumen:

The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post - classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally - dependent land cover estimates — meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover — we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi - weekly Landsat imagery over 20 years (1999 - 2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel - level annual noise. Using CRF, we produced a twenty - year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods.

Citación:

---------- APA ----------

Graesser, J.; Stanimirova, R.; Tarrio, K.; Copati, E. J.; Volante, J. N.; Verón, S. R.; Banchero, S.; Elena, H.; Abelleyra, D. de & Friedl, M. A. (2022). Temporally - consistent annual land cover from landsat time series in the southern cone of South America. Remote Sensing,14, (16),4005
10.3390/rs14164005

---------- CHICAGO ----------

Graesser, Jordan,Stanimirova, Radost,Tarrio, Katelyn,Copati, Esteban Julián,Volante, José Norberto,Verón, Santiago Ramón, et al.. 2022. "Temporally - consistent annual land cover from landsat time series in the southern cone of South America". Remote Sensing 14, no.16:4005.
Recuperado de  
http://ri.agro.uba.ar/greenstone3/library/collection/arti/document/2022graesser