<u>ANEXO</u>

1. IDENTIFICACIÓN DE LA ASIGNATURA

Nombre de la asignatura: Bioinsumos Microbiológicos Aplicados a la Producción Vegetal

Carácter de la asignatura: Obligatoria, Orientación Vegetal

Cátedra - Departamento: Cátedra de Microbiología Agrícola- Departamento de

Biología Aplicada y Alimentos

Carrera: Licenciatura en Biotecnología

Año lectivo: Desde 2026

2. CARACTERÍSTICAS DE LA ASIGNATURA

Ubicación de la materia en el plan de estudio: 5º año

Duración: Bimestral

Profesor responsable de la asignatura: Dr. Marcelo Abel Soria

<u>Equipo docente de la Cátedra de Microbiología Agrícola de la Facultad de Agronomía</u>: Jimena Ruiz, María Victoria Criado, Luciana Paula Di Salvo, Ester Simonetti.

Carga horaria para el estudiante: Cincuenta y seis (56) horas

Correlativas requeridas:

Regular / aprobada para cursar: Microbiología Agrícola y Ambiental

Aprobada para aprobar: Microbiología Agrícola y Ambiental

Modalidad de enseñanza: Curso teórico-práctico.

3. FUNDAMENTACIÓN

El desarrollo de bioinsumos constituye una de gran actividad dentro de la biotecnología aplicada a la producción agrícola. Estos productos representan alternativas sostenibles a los insumos de síntesis química. También se los puede ver como complementos de los insumos de síntesis química. En cualquier caso, contribuyen a la reducción del impacto ambiental, al cuidado de la salud humana y a la mejora de la calidad de los suelos y cultivos.

En el contexto actual de la producción agrícola, los bioinsumos ofrecen ventajas competitivas tanto desde el punto de vista económico como ecológico. Sin embargo, su producción y aplicación presentan desafíos específicos en cuanto a aspectos biotecnológicos: selección y cultivo de microorganismos, diseño y operación de biorreactores, la formulación y conservación de productos, y la evaluación de su calidad y efectividad en campo.

Esta materia brinda a las/los estudiantes de biotecnología las bases conceptuales y prácticas necesarias para integrar conocimientos de microbiología, ingeniería de bioprocesos y agronomía, orientados a la innovación y aplicación de soluciones biotecnológicas en la agricultura.

4. OBJETIVOS

Objetivo general:

Que los estudiantes adquieran conocimientos y desarrollen las habilidades necesarias para diseñar procesos biotecnológicos de fabricación de bioinsumos aplicables a la producción agrícola, modificar procesos existentes y evaluar críticamente proyectos de desarrollo.

Objetivos particulares:

Que los estudiantes

- Adquieran una visión integrada de la producción de insumos biológicos, desde la comprensión del problema agronómico a resolver, pasando por los aspectos biotecnológicos *upstream* y *downstream*, hasta la evaluación de la efectividad a campo.
- Adquieran las habilidades necesarias para diseñar y supervisar las diferentes etapas de la producción de un bioinsumo.

5. CONTENIDOS

5.1. Contenidos mínimos: RESCS-2025-1467-E-UBA-REC

Las ventajas y desventajas del uso de bioinsumos en la producción vegetal. Diseño de requerimientos y del proceso de producción. Procesos biotecnológicos de producción: alternativas de biorreactores y tipos de operación: batch, continua y batch alimentado. Estudio de transferencia en biorreactores: aireación y agitación. Escalado de bioprocesos. Bioprocesos integrados. Operación post proceso: formulación de bioinsumos. Aplicación de los bioinsumos en diferentes esquemas de producción agrícola, Evaluación de la calidad y efectividad

5.2. Contenidos desarrollados

- 1. Introducción a los bioinsumos en la práctica agronómica. Definición y clasificación de bioinsumos: biofertilizantes, biopesticidas, bioestimulantes, inoculantes, consorcios microbianos. Comparación con insumos químicos tradicionales. Ventajas y desventajas de su uso.
- 2. Diseño de requerimientos y procesos de producción. Selección de microorganismos y cepas: criterios de eficacia, seguridad y regulación. Requerimientos nutricionales y fisiológicos: medios de cultivo, pH, temperatura, oxígeno. Definición del flujo de proceso: etapas upstream (cultivo) y downstream (procesamiento y formulación).
- 3. Procesos biotecnológicos de producción. Tipos de biorreactores: tanques agitados, biorreactores de columna de burbujeo y airlift. Sistemas sólidos y fermentación en estado sólido. Modos de operación: batch, continua y batch alimentado. Monitoreo y control: sensores, parámetros críticos (pH, DO, biomasa, sustrato). Consideraciones especiales para la producción de compuestos derivados de microorganismos.
- 4. Fenómenos de transferencia en biorreactores. Transferencia de oxígeno (velocidad de transferencia y KLa). Estrategias de aireación. Estrategias de aireación: burbujeo y dispersión de aire. Balance entre aireación/agitación y costos energéticos.
- 5. Escalado de bioprocesos. Principios de escalado: parámetros dimensionales, criterio de escala (constancia de potencia, de KLa, de tiempo de mezcla). Estrategias para el escalado exitoso: modelado matemático, experimentos piloto y escalado progresivo.
- 6. Bioprocesos integrados. Concepto de integración upstream downstream. Ejemplos de procesos integrados. Automatización y control digital de bioprocesos. Consideraciones para la producción de compuestos derivados de microorganismos.
- 7. Operaciones post-proceso: formulación de bioinsumos. Separación y recuperación de biomasa o metabolitos: centrifugación, filtración, secado. Formulación líquida vs. sólida: estabilidad, viabilidad, facilidad de aplicación.

Aditivos protectores y carriers. Envasado, almacenamiento y vida útil. Variaciones para la producción de compuestos derivados de microorganismos.

- 8. Aplicación de bioinsumos en agricultura: métodos de aplicación (tratamiento de semillas, inoculación en suelo, foliar, fertirriego). Compatibilidad con prácticas agrícolas convencionales y agroecológicas. Ejemplos.
- 9. Evaluación de la calidad y efectividad. Parámetros de calidad: viabilidad microbiana, concentración, pureza, ausencia de contaminantes. Normas y estándares nacionales/internacionales. Ensayos de efectividad en condiciones controladas (invernadero) y a campo. Monitoreo del impacto ambiental y agronómico.

6. METODOLOGÍA DIDÁCTICA Y FORMAS DE INTEGRACIÓN DE LA PRÁCTICA

La asignatura tiene una carga horaria semanal de ocho (8) horas. Se desarrolla con una modalidad teórico-práctica. Las clases se dividen en clases en aula y una práctica en el aula de computación.

Los contenidos teóricos están disponibles al inicio del curso, ya sea a través de videos o apuntes preparados por la cátedra o por indicación de capítulos específicos de la bibliografía obligatoria. Las clases en aula se utilizan principalmente para resolver los problemas que se le presentan a los/las estudiantes en la guía de cuestionarios que prepara la cátedra y para resolver consultas de los temas teóricos.

En las clases en el aula de computación se llevarán a cabo análisis de simulación para comprender la diferencia de los procesos batch, fed-batch y continuo para la producción de biomasa a partir de modificar parámetros básicos como la velocidad específica de crecimiento máxima (µmáx), la afinidad por un sustrato limitante (Ks) y el rendimiento (Yx/s). Se utilizarán aplicaciones en lenguaje R.

Se realizará una visita no obligatoria a una planta de elaboración de bioinsumos.

7. FORMAS DE EVALUACIÓN

Al finalizar el práctico de simulación de procesos de producción de biomasa se toma un examen práctico, que se aprueba con una calificación mínima de 4 (cuatro) puntos.

Al final del curso se toma un examen escrito integrador que abarca los contenidos teóricos y ejercicios de la guía de problemas que se aprueba con una calificación mínima de 4 (cuatro) puntos

Para ambas instancias de evaluación está contemplado un examen recuperatorio para quienes no hayan alcanzado la nota mínima de 4 (cuatro) puntos.

Al finalizar el curso el estudiante quedará en alguna de las siguientes condiciones

- a) Promoción (promocionado) Para promocionar la asignatura el estudiante debe
- 1. Acreditar el 75% de asistencia a las clases

2. Aprobar el examen práctico y el examen integrador ambos con una nota mayor o igual que 7 (siete) puntos.

No se podrá recuperar ninguna de las evaluaciones para promocionar la asignatura

La nota final de la promoción resultará del promedio de las calificaciones obtenidas en las dos instancias de evaluación

- b) Regular. Para quedar en esta condición regular el estudiante deberá
- 1. Acreditar al menos el 75% de asistencia a las clases
- 2. Aprobar el examen del práctico y el examen integrador con una nota igual o mayor que cuatro, pero menor que 7 en una o ambas de ellas.

Se podrán recuperar ambas instancias de evaluación.

Para aprobar la asignatura se deberá rendir un examen final oral. La nota final de la asignatura corresponderá a la evaluación final oral

c) Libre. Quedarán en condición de libres los estudiantes que no alcancen los requisitos para la promoción o la regularidad.

Dadas las características de la asignatura no es posible su aprobación en condición "Libre"

8. BIBLIOGRAFÍA

- 8.1. Bibliografía obligatoria
- 1. Industrial Microbiology. Editores: Wilson DB, Sahm H, Stahmann KP, Koffas M. (2020). Wiley-VCH. ISBN: 978-3-527-69731-1, 424 p.
- 2. Brock Biología de los Microorganismos. Daniel H. Buckley, David A. Stahl, John M. Martinko, Kelly S. Bender y Michael T. Madigan Edición 14 (2015) o cualquiera posterior. Editorial Pearson,1131 p.
- 3. Guías teóricas producidas por la Cátedra: documentos y videos disponibles en el campus virtual de la Facultad de Agronomía.

8.2. Bibliografía complementaria

1. Manual of Industrial Microbiology and Biotechnology. Editores: Bull AT, Junker B, Katz L, Lynd LR, Masurekar P, Reeves CD, Zhao H. (2010). ASM Press. ISBN:9781683671282. DOI:10.1128/9781555816827.

Anexo Resolución Consejo Directivo

Hoja Adicional de Firmas

Número:

Referencia: ANEXO - EX-2025-04502170 - Asignatura obligatoria Bioinsumos Microbiológicos Aplicados a la Producción Vegetal - Licenciatura en Biotecnología

El documento fue importado por el sistema GEDO con un total de 4 pagina/s.