ANEXO

1. IDENTIFICACIÓN DE LA ASIGNATURA

Nombre de la asignatura: Intensificación en Prácticas de Laboratorio de

Química Orgánica de Biomoléculas Carácter de la asignatura: Optativa

Cátedra/Departamento: Cátedra de Química de Biomoléculas, Departamento

de Biología Aplicada y Alimentos

Carrera: Licenciatura en Gestión de Agroalimentos

Período lectivo: 2025-2027

2. CARACTERÍSTICAS DE LA ASIGNATURA

Duración: Bimestral

Profesor responsable de la asignatura: Dras. Paula Virginia Fernández y

Marina Ciancia

Equipo docente: Docentes de la Cátedra de Química de Biomoléculas Carga horaria para el estudiante: TREINTAS y DOS (32) horas – DOS (2)

créditos

Correlativas requeridas: Biomoléculas, aprobada

Modalidad de enseñanza: Taller

3. FUNDAMENTACIÓN

Este taller pretende profundizar conocimientos de técnicas básicas de laboratorio de Química Orgánica de Biomoléculas, así como instrumentales, que se utilizan en el área de las ciencias agronómicas y ambientales. A través de trabajos prácticos de laboratorio el/la estudiante podrá adquirir conceptos teóricos y prácticos a usar en determinaciones cualitativas y cuantitativas de laboratorio relacionadas con la profesión. Para ello plantean actividades de laboratorio relacionadas a temas de interés del futuro profesional.

4. OBJETIVOS

El objetivo general de este taller es que el/la estudiante adquiera destrezas en el laboratorio de análisis en Química Orgánica de Biomoléculas relacionadas a su profesión.

Objetivos específicos:

El estudiante deberá ser capaz de:

- Manejarse en un laboratorio con cierta autonomía, diagramar el trabajo, recabar e interpretar datos y resultados y realizar un informe de lo llevado a cabo en el laboratorio y
- Adquirir nociones básicas de trabajo con instrumental, tanto clásico (sistema de extracción líquido-líquido, titulación, evaporación a presión reducida, cromatografía en capa delgada, etc.), como más moderno (cromatógrafo de gases, HPLC, espectrofotómetro, etc.).

5. CONTENIDOS

Unidad 1. Introducción.

Medidas de seguridad para el trabajo en un laboratorio de Química Orgánica. Cuidado y limpieza del material de vidrio. Disposición de residuos. Manejo de sustancias tóxicas y corrosivas. Materiales de laboratorio.

Unidad 2. Generalidades de métodos de extracción, purificación y caracterización de distintos compuestos a partir de organismos vegetales. Extracción líquido-líquido y sólido-líquido, extracción de sustancias volátiles.

Unidad 3. Nociones sobre métodos cromatográficos clásicos e instrumentales. CG y HPLC. Distintos tipos y sus posibilidades. Espectrometría de masas. Espectroscopía UV-visible. Aplicaciones cualitativas y cuantitativas. Usos y limitaciones.

Unidad 4. Biodiesel: posibles materias primas, determinación de sus características. Reacciones de obtención de biodiesel con sus variantes. Análisis del producto final. Comparación de sus propiedades físicas con los derivados obtenidos de petróleo.

6. METODOLOGÍA DIDÁCTICA Y FORMAS DE INTEGRACIÓN DE LA PRÁCTICA

<u>Clases teórico-prácticas:</u> Se realizará una breve introducción teórica antes de cada laboratorio a fin de retomar conceptos ya abordados en la carrera y se acercará al/ a la estudiante material de lectura obligatoria (apuntes preparados por el equipo docente, trabajos científicos en castellano, y material bibliográfico previamente seleccionado) referido a la temática de cada laboratorio los cuales constarán en la cartelera de la asignatura.

<u>Trabajo de Laboratorio:</u> Se realizarán cuatro trabajos de laboratorio, cada uno de los cuales se extenderá por varias clases sucesivas:

- 1) Buen uso y precauciones en el manejo de material de laboratorio de química orgánica.
- 2) Detección y cuantificación del flavonoide glicosilado Rutina en hojas de soja mediante Espectroscopía UV-visible y Cromatografía Líquida de Alta Eficacia (HPLC).
- 3) Recolección y análisis de compuestos volátiles de plantas de tomate. Análisis e identificación de compuestos por cromatografía gaseosa y espectrometría de masas. Bioensayos con insectos para determinar su actividad biológica.
- 4) Obtención de biodiesel. Control de calidad de la materia prima y del producto obtenido.

<u>Cuaderno de Laboratorio</u>: Deberá contener un detalle de las actividades realizadas a fin de favorecer la interpretación de los resultados obtenidos.

7. FORMAS DE EVALUACIÓN Y APROBACIÓN DE LA ASIGNATURA

Para aprobar la asignatura son requisitos:

El taller se aprueba con nota 4 (cuatro), el cual corresponde al 60 % de los conceptos y actividades desarrolladas aprobadas.

Cada trabajo práctico tendrá una nota que estará conformada por: la nota del interrogatorio previo al laboratorio, la evaluación del cuaderno de laboratorio, la exposición final (oral /escrita) sobre lo realizado en el laboratorio y una nota de concepto que reflejará

Para aprobar la asignatura son requisitos

a) Acreditar al menos el 75% de asistencia a las clases

b) Aprobar los cuatro trabajos prácticos con una calificación individual de CUATRO (4) o más puntos. Cada trabajo práctico tendrá una nota que estará conformada por: la nota del interrogatorio previo al laboratorio, la evaluación del cuaderno de laboratorio, la exposición final (oral /escrita) sobre lo realizado en el laboratorio y una nota de concepto que reflejará el desempeño en el laboratorio.

La calificación final de la asignatura se obtendrá por promedio simple de las calificaciones obtenidas. La calificación mínima de 4 (cuatro) puntos que implica que se ha alcanzado al menos el 60% de los contenidos del curso. El estudiante que no cumpla con los requisitos establecidos quedará en condición de "Libre" como única condición alternativa

8. BIBLIOGRAFÍA

8.1. Bibliografía obligatoria

El material bibliográfico se subirá a la página de la asignatura (CED) a fin de que el alumno tenga acceso a la misma. Este taller no tiene bibliografía de lectura obligatoria fija, aunque en cada práctica se dará a los alumnos bibliografía de lectura obligatoria consistente en trabajos de investigación, capítulos de libro o apuntes preparados por los docentes para su discusión relacionada con la tarea a realizar, todo este material de lectura obligatoria estará en castellano.

8.2. Bibliografía complementaria Bibliografía complementaria general

- 1. Galagovsky Kurman, L. (1995). Química Orgánica, Fundamentos teórico-prácticos para el laboratorio, EUDEBA.
- 2. Leicach, S. R. (2009). Biomoléculas. Estructura y rol en el crecimiento y supervivencia de las plantas. Editorial Facultad de Agronomía.
- 3. Grande Tovar, C.D. (2013). Manual de prácticas de Química Orgánica Aplicada. Cali: Editorial Bonaventuriana.
- 4. García Sanchez, M.A. (2002). Manual de prácticas de Química Orgánica I. Editorial Universidad Autónoma Metropolitana, Mexico, DF.
- 5. Yurkanis Bruice, P. (2007). "Química Orgánica" Quinta edición, Ed. Prentice Hall Mexico Pearson Educational, México.
- 6. McMurry, J. (2012). "Química Orgánica", 8va. Edición, Editorial Thompson, México.
- 7. Alcázar Franco, D.J., Fuentes Gándara, F.A., et al. (2016). Manual de prácticas de laboratorio de química orgánica. Barranquilla: Educosta.

Bibligrafía Complementaria Específica

TP Nº1

No hay una bibliografía específica para este trabajo práctico.

TP №2

1. Hayashi H., Yasuma M., Hiraoka N., Ikeshiro Y., Yamamoto H., Yeşilada E., Sezlk E., Honda G., Tabata M. (1996). Flavonoid variation in the leaves of *glycyrrhiza glabra*. Phytochemistry 42(3) 701-704.

- 2. Hoffmann-Campo C.B., Neto J.A.R., De Oliveira M.C.N., Oliveira L.J. (2006). Detrimental effect of rutin on *Anticarsia gemmatalis*. *Pesquisa Agropecuaria* Brasileira. 41, 1453-1459.
- 3. Piubelli Giorla C., Hoffmann-Campo Clara B., de Arruda Iara C., Franchini J. C., Lara Fernando M. (2003). Flavonoid increase in soybean as a response to *Nezara* viridula inyury and its effect on insect-feeding preference. *Journal of Chemical Ecology*, Vol. 29 (5).

TP Nº 3

- 1. Methods in Chemical Ecology Volume 1 Chemical Methods, -Ed. Jocelyn G. Millar, K. Haynes
- 2. Insect-Plant Biology. Ed L.M. Schoonhoven, J. van Loon, M. Dicke
- 3. Ted C.J. Turlings,* and Matthias Erb. 2018.. Tritrophic Interactions Mediated by Herbivore Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential. Annual Review of Entomology
- 4. Pérez-Hedo, M., Alonso-Valiente, M., Vacas, S. et al. (2021). Plant exposure to herbivore-induced plant volatiles: a sustainable approach through eliciting plant defenses. J Pest Sci,

TP Nº 4

- 1. Mousdale, D.M. (2008). Biofuels. Biotechnology, chemistry and Sustainable Development. CRC Press, Taylor & Francis Group, Boca Raton, Florida, Estados Unidos.
- 2. Huerga, R. "Producción de biodiesel a partir de cultivos alternativos: Experiencia con *Jatropha Curcas*" Tesis de Magister en Tecnología Química (Universidad Nacional del Litoral, Argentina).
- 3. Romano, S. (Grupo de Energías Renovables, Facultad de Ingeniería, UBA) en Forum CYTED IBEROEKA 2010 *"Energía: Fuentes y Aplicaciones"*
- "Métodos alternativos para controlar la calidad del biodiesel" Ponencia
- 4. Castellar Rodríguez et al (Universidad Politécnica de Cartagena, Colombia) Ponencia en II *Jornadas sobre enseñanza de las ciencias y las tecnologías* "Enseñando tecnologías: Biodiesel a partir de aceites usados"
- 5. Página web de la Secretaría de Agricultura, Ganadería y Pesca de la Nación. https://www.magyp.gob.ar/sitio/areas/observatorio_bioeconomia/indicadores/06/index.php#
- 6. Anderson, B., Keehfuss, S., Pettit, B. (2008). Biodiesel: cost and reactant comparison. The Evergreen State College. Fall Winter 2007-2008, 1-14.
- 7. Atabani, A. Silitonga, A., Ong, H., Mahlia, T., Masjuki, H., Irfan Anjum Badruddin, Fayaz, H. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews 18, 211-245.
- 8. Canakei, M. (2007). The potential of restaurant waste lipids biodiesel feedstocks. *Bioresource Technology* 98, 183-190.
- 9. -B. Han Hoe Goh, C. Tung Chong, H. Chyuan Ong, J. Milano, A.H. Shamsuddin, X. Jiat Lee, Jo-Han Ng, (2022). Strategies for fuel property enhancement for second-generation multi-feedstock biodiesel. *Fuel*, 315, 123178.
- 10.T.A.Z. de Souza, G.M. Pinto, A.A.V. Julio, C.J.R. Coronado, R. Perez-Herrera, B.O.P.S. Siqueira, R.B.R. da Costa, J.J. Roberts, J.C.E. Palacio (2022). Biodiesel in South American countries: A review on policies, stages of

development and imminent competition with hydrotreated vegetable oil. Renewable and Sustainable Energy Reviews 153, 111755.

Anexo Resolución Consejo Directivo Hoja Adicional de Firmas

Número:

Referencia: ANEXO - EX-2025-02426175 - Asignatura optativa Intensificación en Prácticas de Laboratorio de Química Orgánica de Biomoléculas - Licenciatura en Gestión de Agroalimentos

El documento fue importado por el sistema GEDO con un total de 5 pagina/s.