ANEXO

1. DENTIFICACIÓN DE LA ASIGNATURA

Nombre de la asignatura: Intensificación en Prácticas de Laboratorio de Química

Orgánica de Biomoléculas

Carácter dela asignatura: Optativa

Cátedra - Departamento: Química de Biomoléculas, Departamento de Biología

Aplicada y Alimentos Carrera: Agronomía

Período Lectivo: 2025-2027

2. CARACTERÍSTICAS DE LA ASIGNATURA

Duración: bimestral

Profesores Responsables de la Asignatura: Marina Ciancia, Patricia C. Fernández,

Paula Virginia Fernández

Equipo Docente:

Docentes de la cátedra de Química de Biomoléculas

Carga horaria para el alumno: TREINTAS y DOS (32) horas – DOS (2) créditos.

Correlativas requeridas: Aprobada: Biomoléculas

Modalidad: Taller

Esta asignatura puede ser utilizada, de acuerdo con lo establecido en la Resolución (CS) 6180/16 y modificatorias RESCS-2021-430-E-UBA-REC y RESCS-2023-1096-E-UBA-REC, para acreditar la asignatura obligatoria Taller de Práctica I: Introducción a los estudios universitarios y Agronómicos" sólo si al momento de cursarla tiene aprobada la asignatura la asignatura correlativa requerida: Biomoléculas

3. FUNDAMENTACIÓN:

Este taller pretende profundizar conocimientos de técnicas básicas de laboratorio de Química Orgánica de Biomoléculas, así como instrumentales, que se utilizan en el área de las ciencias agronómicas y ambientales. A través de trabajos prácticos de laboratorio el/la estudiante podrá adquirir conceptos teóricos y prácticos a usar en determinaciones cualitativas y cuantitativas de laboratorio relacionadas con la profesión. Para ello plantean actividades de laboratorio relacionadas a temas de interés del futuro profesional.

4. OBJETIVOS:

El objetivo general de este taller es que el/la estudiante adquiera destrezas en el laboratorio de análisis en Química Orgánica de Biomoléculas relacionadas a su profesión.

Objetivos específicos:

El estudiante deberá ser capaz de:

• Manejar en un laboratorio con cierta autonomía, diagramar el trabajo, recabar e

interpretar datos y resultados y realizar un informe de lo llevado a cabo en el laboratorio y

• Adquirir nociones básicas de trabajo con instrumental, tanto clásico (sistema de extracción líquido-líquido, titulación, evaporación a presión reducida, cromatografía en capa delgada, etc.), como más moderno (cromatógrafo de gases, HPLC, espectrofotómetro, etc.).

5. CONTENIDOS MÍNIMOS

Nociones básicas para el trabajo en el laboratorio. Métodos de extracción, purificación y caracterización de distintos compuestos a partir de organismos vegetales. Métodos cromatográficos clásicos e instrumentales.

6. CONTENIDOS

Unidad 1. Introducción.

Medidas de seguridad para el trabajo en un laboratorio de Química Orgánica. Cuidado y limpieza del material de vidrio. Disposición de residuos. Manejo de sustancias tóxicas y corrosivas. Materiales de laboratorio.

Unidad 2. Generalidades de métodos de extracción, purificación y caracterización de distintos compuestos a partir de organismos vegetales. Extracción líquido-líquido, extracción de sustancias volátiles.

Unidad 3. Nociones sobre métodos cromatográficos clásicos e instrumentales. CG y HPLC. Distintos tipos y sus posibilidades. Espectrometría de masas. Espectroscopía UV-visible. Aplicaciones cualitativas y cuantitativas. Usos y limitaciones.

Unidad 4. Biodiesel: posibles materias primas, determinación de sus características. Reacciones de obtención de biodiesel con sus variantes. Análisis del producto final. Comparación de sus propiedades físicas con los derivados obtenidos de petróleo.

7. METODOLOGÍA DIDÁCTICA Y FORMAS DE INTEGRACIÓN DE LA PRÁCTICA

<u>Clases teórico-prácticas:</u> Se realizará una breve introducción teórica antes de cada laboratorio a fin de retomar conceptos ya abordados en la carrera y se acercará al/ a la estudiante material de lectura obligatoria (apuntes preparados por el equipo docente, trabajos científicos en castellano, y material bibliográfico previamente seleccionado) referido a la temática de cada laboratorio los cuales constarán en la cartelera de la asignatura.

Trabajo de Laboratorio: Se realizarán cuatro trabajos de laboratorio, cada uno de

los cuales se extenderá por varias clases sucesivas:

- 1) Buen uso y precauciones en el manejo de material de laboratorio de química orgánica.
- 2) Detección y cuantificación del flavonoide glicosilado Rutina en hojas de soja mediante Espectroscopía UV-visible y Cromatografía Líquida de Alta Eficacia (HPLC).
- 3) Recolección y análisis de compuestos volátiles de plantas de tomate. Análisis e identificación de compuestos por cromatografía gaseosa y espectrometría de masas. Bioensayos con insectos para determinar su actividad biológica.
- 4) Obtención de biodiesel. Control de calidad de la materia prima y del producto obtenido.

<u>Cuaderno de Laboratorio</u>: Deberá contener un detalle de las actividades realizadas a fin de favorecer la interpretación de los resultados obtenidos.

8. FORMAS DE EVALUACIÓN:

Para aprobar el taller, el alumno deberá asistir al menos al 75% de las clases/laboratorios.

El taller se aprueba con nota 4 (cuatro), el cual corresponde al 60 % de los conceptos y actividades desarrolladas aprobadas.

Cada trabajo práctico tendrá una nota que estará conformada por: la nota del interrogatorio previo al laboratorio, la evaluación del cuaderno de laboratorio, la exposición final (oral /escrita) sobre lo realizado en el laboratorio y una nota de concepto que reflejará la forma en que cada alumno se desenvolvió en el laboratorio durante ese trabajo práctico. La nota final del/de la estudiante en el taller será el promedio de las notas obtenidas en los trabajos prácticos.

Si el/la estudiante no alcanza una nota final mayor o igual que 4 (cuatro), quedará en condición "Libre" como única condición alternativa posible.

8. BIBLIOGRAFÍA

8.1. Bibliografía obligatoria

El material bibliográfico se subirá a la página de la asignatura (CED) a fin de que el alumno tenga acceso a la misma. Este taller no tiene bibliografía de lectura obligatoria fija, aunque en cada práctica se dará a los alumnos bibliografía de lectura obligatoria consistente en trabajos de investigación, capítulos de libro o apuntes preparados por los docentes para su discusión relacionada con la tarea a realizar, todo este material de lectura obligatoria estará en castellano.

8.2. Bibliografía complementaria Bibliografía general

1. Galagovsky Kurman, L. (1995). Química Orgánica, Fundamentos teóricoprácticos para el laboratorio, EUDEBA.

- 2. Leicach, S. R. (2009). Biomoléculas. Estructura y rol en el crecimiento y supervivencia de las plantas. Editorial Facultad de Agronomía.
- 3. Grande Tovar, C.D. (2013). Manual de prácticas de Química Orgánica Aplicada. Cali:Editorial Bonaventuriana.
- 4. García Sanchez, M.A. (2002). Manual de prácticas de Química Orgánica I. Editorial Universidad Autónoma Metropolitana, Mexico, DF.
- 5. Yurkanis Bruice, P. (2007). "Química Orgánica" Quinta edición, Ed. Prentice Hall Mexico Pearson Educational, México.
- 6. McMurry, J. (2012). "Química Orgánica", 8va. Edición, Editorial Thompson, México.
- 7. Alcázar Franco, D.J., Fuentes Gándara, F.A., et al. (2016). Manual de prácticas de laboratorio de química orgánica. Barranguilla: Educosta.

Bibliografia Específica

TP Nº1 No hay una bibliografía específica para este trabajo práctico.

- **TP Nº2** 1. Hayashi H., Yasuma M., Hiraoka N., Ikeshiro Y., Yamamoto H., Yeşilada E., Sezlk E., Honda G., Tabata M. (1996). Flavonoid variation in the leaves of *glycyrrhiza glabra*. Phytochemistry 42(3) 701-704.
- 2. Hoffmann-Campo C.B., Neto J.A.R., De Oliveira M.C.N., Oliveira L.J. (2006). Detrimental effect of rutin on *Anticarsia gemmatalis*. *Pesquisa Agropecuaria* Brasileira. 41, 1453-1459.
- 3. Piubelli Giorla C., Hoffmann-Campo Clara B., de Arruda Iara C., Franchini J. C., Lara Fernando M. (2003). Flavonoid increase in soybean as a response to *Nezara* viridula inyury and its effect on insect-feeding preference. *Journal of Chemical Ecology*, Vol. 29 (5).
- **TP Nº 3** 1. Methods in Chemical Ecology Volume 1 Chemical Methods, -Ed. Jocelyn G. Millar, K. Haynes
- 2. Insect-Plant Biology. Ed L.M. Schoonhoven, J. van Loon, M. Dicke
- 3. Ted C.J. Turlings,* and Matthias Erb. 2018.. Tritrophic Interactions Mediated by Herbivore Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential. Annual Review of Entomology
- 4. Pérez-Hedo, M., Alonso-Valiente, M., Vacas, S. et al. (2021). Plant exposure to herbivore-induced plant volatiles: a sustainable approach through eliciting plant defenses. J Pest Sci,
- **TP Nº 4** 1. Mousdale, D.M. (2008). Biofuels. Biotechnology, chemistry and Sustainable Development. CRC Press, Taylor & Francis Group, Boca Raton, Florida, Estados Unidos.
- 2. Huerga, R. "Producción de biodiesel a partir de cultivos alternativos: Experiencia con *Jatropha Curcas*" Tesis de Magister en Tecnología Química (Universidad Nacional del Litoral, Argentina).
- 3. Romano, S. (Grupo de Energías Renovables, Facultad de Ingeniería, UBA) en

- Forum CYTED IBEROEKA 2010 "Energía: Fuentes y Aplicaciones"
- "Métodos alternativos para controlar la calidad del biodiesel" Ponencia
- 4. Castellar Rodríguez et al (Universidad Politécnica de Cartagena, Colombia) Ponencia en II *Jornadas sobre enseñanza de las ciencias y las tecnologías* "Enseñando tecnologías: Biodiesel a partir de aceites usados"
- 5. Página web de la Secretaría de Agricultura, Ganadería y Pesca de la Nación. https://www.magyp.gob.ar/sitio/areas/observatorio_bioeconomia/indicadores/06/ind ex.php#
- 6. Anderson, B., Keehfuss, S., Pettit, B. (2008). Biodiesel: cost and reactant comparison. The Evergreen State College. Fall Winter 2007-2008, 1-14.
- 7. Atabani, A. Silitonga, A., Ong, H., Mahlia, T., Masjuki, H., Irfan Anjum Badruddin, Fayaz, H. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews 18, 211-245.
- 8. Canakei, M. (2007). The potential of restaurant waste lipids biodiesel feedstocks. *Bioresource Technology* 98, 183-190.
- 9. -B. Han Hoe Goh, C. Tung Chong, H. Chyuan Ong, J. Milano, A.H. Shamsuddin, X. Jiat Lee, Jo-Han Ng, (2022). Strategies for fuel property enhancement for second-generation multi-feedstock biodiesel. *Fuel*, 315, 123178.
- 10.T.A.Z. de Souza, G.M. Pinto, A.A.V. Julio, C.J.R. Coronado, R. Perez-Herrera, B.O.P.S. Siqueira, R.B.R. da Costa, J.J. Roberts, J.C.E. Palacio (2022). Biodiesel in South American countries: A review on policies, stages of development and imminent competition with hydrotreated vegetable oil. *Renewable and Sustainable Energy Reviews* 153, 111755.

Anexo Resolución Consejo Directivo

Hoja Adicional de Firmas

Número:

Referencia: ANEXO - EX-2025-02425994 - Asignatura optativa Intensificación en Prácticas de Laboratorio de Química Orgánica de Biomoléculas - carrera de Agronomía

El documento fue importado por el sistema GEDO con un total de 5 pagina/s.