(15)

Carrera de Ingeniería Agronómica

QUÍMICA II

PROGRAMA ANALÍTICO

Año 1998

PROGRAMA ANALÍTICO DE LA MATERIA

OBJETIVO GENERAL

Al finalizar el curso el estudiante deberá estar capacitado para utilizar las bases moleculares de la vida como herramienta para interpretar la fisiología de los seres vivos y el control de su expresión génica, tendiente a una producción agropecuaria eficiente y sustentable.

CONTENIDOS

- <u>Grupos funcionales</u>, su caracterización y comportamiento químico. Reconocimiento de los mismos en las estructuras de las biomoléculas que constituyen los metabolitos primarios presentes en la célula.
- <u>Lípidos</u>. Lípidos simples. Clasificación. Acidos grasos. Características físicas y químicas de los acilglicéridos. Lípidos compuestos. Clasificación. Productos de hidrólisis. Carácter anfipático. Isoprenoides. Clasificación. Vitaminas, carotenos. Esteroides. Estructura general.
- -<u>Isomería</u>. Isomería estructural. Estereoisomería. Isomería geométrica y óptica. Biomoléculas que presentan el fenómeno de estereoisomería. Propiedades de las sistancias opticamente activas.
- <u>Hidratos de carbono.</u> Clasificación. Monosacáridos: estructuras acíclica y cíclica. Propiedades físicas y químicas. Oligosacáridos. Polisacáridos de reserva y estructura. Estructura y propiedades químicas. Glicósidos. Glicósidos cianogenéticos. Estructura y propiedades físicas y químicas.
- <u>Aminoácidos y proteínas.</u> alfa-aminoácidos. Clasificación biológica y estructural. Propiedades físicas y químicas. Péptidos y proteínas. Unión peptidica. Estructuras primaria, secundaria, terciaria y cuaternaria de una proteína. Clasificación de las proteínas según su composición y su función. Propiedades físico-químicas de las proteínas. Desnaturalización.
- <u>Acidos nucleicos</u>. Elementos constitutivos: hidratos de carbono, compuestos heterocíclicos y ácido fosfórico. Estructua de las bases purínicas y pirimidínicas. Nucleósidos y nucleótidos. Acidos nucleicos: ARN y ADN.
- <u>Bioenergética</u>. Concepto. Termodinámica de las transformaciones bioquímicas. Concepto de energía libre y criterio de espontaneidad. Reacciones exergónicas y endergónicas. Reacciones acopladas. Ejemplos. Uniones químicas de alta energía: concepto. Ciclo de ATP.
- Enzimas. Definición, clasificación decimal y nomenclatura. Propiedades fisicas y químicas de las enzimas. Especificidad enzimática. Teorías sobre el mecanismo de acción enzimática. Los factores que influyen en la formación del complejo ES. Cinética. Inhibición competitiva y no competitiva. Enzimas alostéricas y retrocontrol: su importancia y ejemplos. Isoenzimas. Coenzimas: estructura, propiedades. Las coenzimas de las reacciones redox y de transferencia.

- <u>Membranas biológicas y mecanismo de transporte.</u> Composición química y estructura de la membrana plasmática y de organelas subcelulares. Función de los lípidos estructurales con ácidos grasos poliinsaturados. Modelo de mosaico fluído. Fenómenos de transporte a través de membranas. Bomba de Na⁺/K⁺ y bomba electrogénica de protones. Cotransporte y contratransporte.
- <u>Metabolismo de hidratos de carbono.</u> Glucólisis: etapas e importancia biológica. Bioquímica de la glucólisis. Fosforilación a nivel de sustrato. Balance energético. Fermentaciones: láctica y etanólica, su relación con el ensilaje. Efecto Pasteur.

Reversión de la glucólisis. Ciclo de pentosas fosfato (CPP): etapas e importancia biológica. Interrelación metabólica.

Biosíntesis y degradación de hidratos de carbono: sacarosa, almidón y glucógeno. Los nucleótidos-azúcares como intermediarios.

Oxidación aeróbica: ciclo de los ácidos tricarboxílicos. Etapas e importancia biológica. Rendimiento energético. Anfibolismo. Reacciones anapleróticas. Regeneración en aerobiosis de coenzimas oxidadas.

- <u>Transporte electrónico y respiración celular.</u> Concepto. Cadena respiratoria mitocondrial. Fosforilación oxidativa. Teorías de la fosforilación oxidativa. Desacoplantes e inhibidores. Respiración insensible al cianuro en vegetales.
- <u>Metabolismo de lípidos</u>. Catabolismo de los lípidos de reserva y de estructura. Degradación de los ácidos grasos: beta-oxidación. Etapas e importancia biológica. Rendimiento energético. Alfa-oxidación en hojas y semillas. Omega-oxidación. Lipoxigenasa.

Ciclo del glioxilato. Etapas. Neoglucogénesis. Concepto. Relaciones con la germinaicón y senescencia.

Biosíntesis de ácidos grasos saturados e insaturados. Localización subcelular en animales y vegetales. Biosíntesis de acilglicéridos, de lípidos complejos y de la unidad isoprenoide.

- <u>Metabolismo de aminoácidos</u>. Desaminación oxidativa y no oxidativa. Transaminación. Decarboxilación. Vías de incorporación de amoníaco en vegetales: glutamato deshidrogenasa, glutamina sintetasa y glutamato sintetasa. Bioquímica comparada de la eliminación del nitrógeno en los animales. Ciclo de la urea. Síntesis de ácido úrico.
- Transferencia de la información genética. Biosíntesis de polinucleótidos. ADN: reacciones de duplicación y reparación. ARN: reacciones de transcripción. Genes. El código genético. Biosíntesis de proteínas. Etapas. Polirribosomas. Mutaciones: ejemplos e importancia biológica. ADN virus y ARN virus: mecanismos bioquímicos de la multiplicación. Regulación de la expresión genética en procariotes y eucariotes. Fitocromo y fitohormonas. Bases bioquímicas de su actividad biológica.
- Fotosíntesis. Concepto e importancia. Ecuación fundamental de la fotosíntesis. Cloroplasto, ultraestructura. Fotosistemas I y II. Fenómenos fotosintéticos: etapas fotoquímica y bioquímica.

Fotorrespiración. Asimilación fotosintética diferencial del CO₂: plantas C4. Fotosíntesis en plantas con metabolismo ácido de Crasuláceas.

- <u>Ciclo del nitrógeno en el ecosistema.</u> Concepto e importancia. Procesos de amonificación, nitrificación y asimilación de nitratos. Respiración de nitratos. Fijación biológica del

nitrógeno. Bioquímica de la fijación simbiótica y no simbiótica. Fertilizantes nitrogenados y bioquímica de su utilización.

- <u>Bioquímica de la germinación</u>. Concepto. Dormición. Respiración. Movilización de las biomoléculas en semillas con reservas amiláceas, lipídicas y proteicas. Regulación.

TRABAJOS PRÁCTICOS:

- + Reacciones de alcoholes: oxidación y esterificación.
- + Hidrólisis alcalina de grasas. Ensayos con aceites. Caracterización de ácidos grasos no saturados.
- + Hidrólisis alcalina de la lecitina de huevo. Caracterización de sus componentes.
- + Reacciones de reconocimiento e indentificación de hidratos de carbono.
- + Hidrólisis seriada del almidón. Cromatografía en papel de hidratos de carbono.
- + Reacciones de aminas y aminoácidos.
- + Desnaturalización de proteínas. Cromatografía en papel de aminoácidos.
- + Estudio cinético de sacarasa.
- + Fermentación láctica en ensilaje.
- + Amilasas en semillas de cebada en germinación.
- + Perfil electroforético de aminoácidos en relación a la conservación de granos de cereales.
- + Actividad de nitrato reductasa en hojas de espinaca.
- + Diversidad de la expresión genética en especiesde interés agronómico.
- + Fotosíntesis y acción de herbicidas. Reacción de Hill en cloroplastos.
- + Inducción de alfa-amilasas por giberelina en la germinación de cebada.

BIBLIOGRAFÍA:

- * Lehninger, A., D. Nelson y M. Cox. 1993. Principios de Bioquímica. Ed. Omega, Barcelona. 1013 págs.
- * Rawn, J.D. 1989. Bioquímica. 1a. edición. Interamericana y McGraw-Hill, Madrid. 2 Vol., 1105 págs:
- * Stryer, L. 1988. Bioquímica. 3a. edición. Ed. Reverté, Barcelona. 2 Vol., 1084 págs.

Ver más información bibliográfica en página 108.