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Text S1. 

 

Attribution of displacement to natural and induced factors 

One way to test the influence of multiple continuous variables that might have 

interactive and/or non-linear effects is through boosted regression trees, which are 

based on machine learning algorithms capable of determining features’ importance 

while maintaining adequate interpretability (Elith et al., 2008; Radinger et al., 2018). 

Based on the effect of topography on potential energy guiding the stagnancy of surface 

water, and of climate regimes in terms of spatial variability of rainfall events, we 

hypothesized that (1) displacement is fostered by low water convergence, which could be 

the result of largely flat topographies, highly meandering rivers, increasing aridity. Based 

on the different allocation of flooding for crops, decoupled from how flooding spreads 

over a floodplain, and the long-term effect of dam emplacement on the local flooding 

regime of the altered water course, we further hypothesize that (2) inundation 

displacement is enhanced by intensely irrigated regions destined to rice production and 

countered by well-defined lakes, including natural formations and manmade dams and 

emplacements for storing water.  

We selected global datasets related to some of the most relevant aspects in which 

inundation displacement may be influenced by topography, climate, and large-scale 

anthropic activity. Figure S1 gathers the geographical distribution of these variables 

aggregated to each landscape. We obtained information from (1) Global Multi-resolution 

Terrain Elevation Data (GMTED2010, USGS) to derive three topographical variables: (a) 

terrain ruggedness (Riley et al., 1999), and slope integrated at (b) local (250m) and (c) 

regional (5km) levels (Figure S1 a-b); (2) Global database of river width, slope, catchment 

area, meander wavelength, sinuosity, and discharge (Frasson et al., 2019, and based upon 

Global River Width from Landsat, Allen & Pavelsky 2018) to derive the average meander 

wavelength across all riverine segments (between 60°N and 56°S) contained in each 

landscape (Figure S1c); (3) Global Lake and Wetlands Dataset (GLWD; Lehner & Doll 

2004) to derive four hydrological variables: lake, river, floodplain and reservoir coverage 

fractions per landscape (Figure S1 d-g); (4) TerraClimate (Abatzoglou et al., 2018) to 

derive the climatological aridity index as the long-term of annual precipitation-to-

potential evapotranspiration ratio (Figure S1h); (5) 2015 Anthromes 12K (Ellis et al., 2019) 

from which we derived three agricultural variables related with water management: rice, 

irrigated and rainfed coverage fractions per landscape (Figure S1 i-k). We also included 

the fraction covered by remote woodlands and flooded forests (Figure S1 l-m) as a proxy 

of one key passive satellite data caveat which can interfere with the depiction of surface 

water observation by remote sensors onboard satellite platforms.   
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Text S2. 

Sensitivity analysis of the displacement indices to changes in window size 

To test the scale-dependency of the displacement phenomena and the two indices 

we propose to detect and evaluate them, we performed a sensitivity analysis of the 

distribution and ranking of dext and dtot across different window sizes, downscaling 

(0.5°x0.5°) and upscaling (3°x3°) from the original, 1°x1° grid. The sensitivity analysis 

revealed that changes in the scale of the analysis had little effect on the ranking of 

displacements (both dext and dtot) across different study windows (Figure S3). This 

suggests that the geographic patterns we observed in our study are relatively robust and 

are not significantly influenced by the choice of window size. As an example, the ranking 

of lower to higher performance of the indices across nine windows presented in Figure 2 

remains similar across scales (Figure S3).  

It should be noted, however, that increasing the scale of analysis to 3° by 3° windows 

resulted in a slight increase of extreme displacement values. This effect is likely due to 

the increasing non-synchronicity of flooding episodes over larger areas. For instance, a 

paramount case would be to compute the global extreme displacement index, which 

would highlight the dominant northern hemisphere peak surface water extent and its 

mismatch from the multiple flooding dynamics occurring elsewhere in the world at other 

times. On the other hand, the dtot index could be enhanced when using smaller analysis 

windows. This observation may be linked to the greater influence of pixel-level noise 

from remotely sensed water classification in smaller geographic extents, leading to an 

increased noise-to-signal ratio. 
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Figure S1. Geographical distribution of the thirteen variables for which we analyzed their 

influence on inundation displacement: (a) Terrain Ruggedness Index; (b) Local-to-

Regional slope ratio; (c) Mean meandwave length; (d) Lake fraction; (e) River fraction; (f) 

Floodplain fraction; (g) Reservoir fraction; (h) Aridity Index.  
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Figure S1 (cont.). Geographical distribution of the thirteen variables for which we 

analyzed their influence on inundation displacement: (i) Rice fraction; (j) Irrigated 

cropland fraction; (k) Rainfed fraction; (l) Remote woodland fraction; (m) Flooded forest 

fraction. 
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Figure S2. Correlation matrix of typical flooding descriptors and proposed indicators of 

inundation displacement, all derived from the same dataset (monthly, Landsat-based 

Global Surface Water; Pekel et al., 2016). Color hue reflects the direction of Spearman’s 

rho correlation (red = negative; blue = positive), while color intensity reflects the 

strength of the correlation. maxExt = maximum registered flooded extent per 1-degree 

grid cell at any month between 1985 and 2020; CV = coefficient of variation (mean / sd); 

all-Max = absolute difference between the sum of all pixels having been flooded at any 

point between 1985 and 2020, and the maximum registered flooded event (maxExt); 

mismatches = absolute differences between the null model of coherent flooding 

development and the actual, pixel-level flooding frequency distribution; d_ext = extreme 

displacement index (Eq. 1); d_tot = total displacement index (Eq. 2). 
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Figure S3. Sensitivity analysis of the two proposed indices (extreme displacement, top; 

total displacement, bottom) in response to changes in window size by downscaling and 

upscaling from the original, 1°x1° landscapes. We highlight the performance of each 

index across the same nine windows depicted in Figure 2. 
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Figure S4. Natural (green) and human (violet) relative influences on (a) total and (b) 

extreme inundation displacement. Influence values are averaged across a thousand 

regression tree iterations. 
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Figure S5. Marginal effect of the natural and induced factors of total inundation 

displacement (dtot), fitted through general additive models (gam). Values between 

parenthesis at the x-axis correspond to the relative influence of each variable (averaged 

across 1000 iterations). 
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Figure S6. Marginal effect of the natural and induced factors of extreme inundation 

displacement (dext), fitted through general additive models (gam). Values between 

parenthesis at the x-axis correspond to the relative influence of each variable (averaged 

across 1000 iterations). 
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Figure S7. Example of displacement reduction as a result of water reservoir 

emplacement in a 1°x1° landscape centered at 30.5°N, 110.5°E encompassing the Three 

Gorges Dam (magenta box) and Shuibuiya Dam (red box) which were built and put into 

operation between 1994 and 2008. (a-c) geographical distribution of flooding frequency 

for the periods 1985-2002 (i.e., before the operation of either dam); 2003-2021 (i.e., 

operational period of the TGD but not SD); and 2009-2021 (i.e., operational period of 

both dams). (d-e) comparative Google Earth images over the Yangtze River and 

Qingjiang River, respectively, before and after the emplacement of the dams. 
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