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1. APPENDIX S1. SUPPORTING METHODS 

1.1. Weather conditions derived from WorldClim database 

Apart from variables described in the main text, geographical coordinates were used to obtain 

minimum and maximum annual temperatures at a latitude/longitude resolution of 30 seconds from 

50-year climatic means (1950-2000) of the WorldClim database (www.worldclim.org) (Hijmans et 

al., 2005). The Pearson correlation between minimum and maximum annual temperature with mean 

annual temperature (MAT) were 0.8 and 0.9, respectively (Figure S7). Therefore, these two variables 

were not included in the statistical models.  

Estimates of potential evapotranspiration (PET; mm year-1) were obtained from WorldClim 

minimum and maximum temperatures and latitude according to the function PET_fromTemp in the 

EcoHydRology package in R (Fuka et al., 2014) that is based on the Priestley-Taylor (1972) equation. 

However, this variable was also not included in the model because it was highly correlated with mean 

and maximum annual temperature (Pearson correlation = 0.71 and 0.91, respectively). 

The aridity index (AI), obtained as the mean annual precipitation (MAP) to potential 

evapotranspiration (PET) ratio, was used to evaluate the effect of precipitation surplus or deficit 

(UNEP, 1992). According to this index, aridity zones inside the survey area were defined as hyperarid 

if AI <0.5, arid if 0.05 < AI < 0.20, semi-arid if 0.20 < AI < 0.50, dry subhumid if 0.50 < AI < 0.65 

and humid if AI > 0.65. As AI and MAP were strongly correlated (Figure S7), those AI ranges were 

approx. equivalent to <65, 65-200, 200-500, 200-500 and >650 mm of MAP, respectively. The 

Pearson correlation between AI and MAP was 0.99 showing that precipitation was the dominant 

control on AI. 

Atmospheric relative humidity (RH) was calculated as the ratio between actual vapor pressure 

(ea, kPa) and saturation vapor pressure (esat, kPa), and expressed as a percentage (ea/esat  100). 

Saturation vapor pressure was estimated by using the minimum and maximum annual temperatures 

from the WorldClim database (1950-2000) according to Allen et al. (1998): 0.6108  exp((17.27  

temp) / (temp + 237.3)) where temp represents annual minimum or maximum temperature (in °C). 

The mean esat from minimum and maximum temperatures was taken as the effective saturation vapor 

pressure. Actual vapor pressure was obtained from the WorldClim v2.1 database (1970 – 2000). The 

Pearson correlation between mean annual precipitation (MAP) and atmospheric relative humidity 

(RH) was 0.84. Therefore, RH was not included in the statistical models.  

Average maximum temperature from June to December 2014 – the growing season of H. 

comosum (Defossé et al., 1990) – was used in the estimation of intrinsic water use-efficiency (iWUE; 

see main text and below). Maximum temperature was estimated by the interpolation method. Climatic 

variables for the sampling-year growing season represented the conditions affecting growth of the 

https://www.worldclim.org/data/worldclim21.html
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sampling-year shoot tissue that was collected for further analyses. We used monthly maximum 

temperatures available from 22 meteorological stations in the survey area 

(https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd) to generate models (generalized linear model; 

glm function; R) which included elevation, longitude, latitude and average maximum temperature 

(long term climatic variable from WorldClim databased described above) as predictors. The 

meteorological stations included: El bolsón, Esquel aero, Maquinchao, San Carlos de Bariloche, 

Arroyo pescado, Corcovado, Cushamen, El hoyo, El maiten, Gobernador Costa, Gualjaina, l. Amutui 

quimei, Las golondrinas, Presa futaleufú, Puerto Bustillo, Río Futaleufú, Río Percy, Río Pico 

Vasquez, Río Senguer, Trevelin Incendios, Trevelin INTA, Valle del Corinto. We ran models for each 

month. Model assumptions on variance homogeneity and error normal distribution were graphically 

evaluated. We diagnosed multicollinearity by means of the vif function in car (Fox and Weisberg, 

2011) and excluded terms with variance inflation factors (VIF) values above 1.5. Residual spatial 

correlation was evaluated by residual bubble in a coordinates plot as well as with semivariograms 

with and without four anisotropy factors. We did not find spatial correlation among residuals. Outlier 

removal of some stations was justified by the fact that there can be very local weather extremes which 

would have reduced the fit of the models. Finally, we predicted (predict function in R) monthly current 

maximum temperatures for the 30 sites of the survey. Values were averaged from June to December 

and expressed in °C. This approach of current weather conditions interpolation was also used to 

estimate mean and minimum temperature, precipitation and potential evapotranspiration (see Figure 

S7) and is similar to that described by Wittmer et al.  (2008). 

1.2. Soil particle size distribution and potential water availability 

Particle size was determined at site level by the pipette method described by Robison (1922) 

following Van Reeuwijk (2002) (https://www.isric.org/sites/default/files/ISRIC_TechPap09.pdf). 

The analysis comprised the fine earth <2 mm fraction. Cementing materials such as organic matter 

was removed by adding H2O2 (30% in distilled water) to the sample placed in a beaker overnight. 

The next day, beakers were placed in a water bath held at 80 °C and 5 to 10 mL of H2O2 was added 

several times until decomposition of organic matter was complete (i.e. the supernatant was clear). 

Then samples were dried, and 10 g of sample material used to determine the clay and silt fractions by 

the pipette method. After shaking with a dispersing agent (150 mL of 0.5% (v/v) sodium 

hexametaphosphate) for 90 minutes, the suspension was transferred to a 1 L polythene bottle. The 

bottle was filled with water to 1 L and placed in a water bath at room temperature to minimize 

fluctuations of temperature during the procedure. Temperature was recorded to calculate 

sedimentation time according to Stokes law. Depending on the temperature, sedimentation times were 

approximately 45 sec and 4 h for the <50 μm and <2 μm particle size fractions, respectively. Two 

https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd
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volumes of 20 mL were pipetted from the center of the cylinder at depths of 10 cm and 5 cm, 

respectively. The aliquots were transferred to tared moisture tins, evaporated on a water bath and 

dried overnight at 105 °C. The sand fraction was separated from the clay and silt fraction with a 52 

μm sieve, dried overnight at 105 °C and weighed. Fractions of sand, silt and clay were expressed as 

percent of initial weight. 

Potential soil water availability (PWA; % w/w) was estimated according to Saxton & Rawls 

(2006). This model estimated PWA based on soil particle distribution (i.e., clay and sand; % w/w), 

organic matter (estimated from total soil carbon content), pH and electrical conductivity (dS m-1; both 

1:2.5 ratio soil to distilled water). The model includes a density factor which was set to 1 and gravel 

content which was set to zero. This variable allowed us to summarize the expected effect of several 

variables such as soil clay, organic matter, pH, and electrical conductivity on the response variables 

analyzed, thus permitting reduction of statistical model complexity. Pearson correlation between PWA 

and MAP was 0.67 (Figure S7) and MAP was preferred in the statistical models. 

1.3. Rhizosphere Soil 

Rhizosphere soil was collected from each plant. Soil chemical properties such as pH and 

electrical conductivity were measured in all rhizosphere soil samples (as mentioned above). Soil pH 

and electrical conductivity were determined on air-dried and sieved (2 mm) samples using a 1:2.5 

soil/ distillate water ratio. Air dried soil samples were sieved to 2 mm, ground, and analyzed for total 

carbon (C) and nitrogen (N) concentration using an elemental analyzer (NA 1110; Carlo Erba 

Instruments). Pearson correlation between MAP and rhizosphere N was 0.71 (Figure S7). Therefore, 

rhizosphere N was excluded from the statistical models as predictor. 

1.4. Intrinsic water-use efficiency 

δ13Cp (see main text) was used to calculate 13C discrimination (Δ13C, see below) from which 

iWUE, the assimilation-weighted, growing season-integrated ratio of net photosynthesis (A) to 

stomatal conductance for water vapor (gH2O) was estimated according to Ma et al. (2021) as 

𝑖𝑊𝑈𝐸 =
𝑐𝑎

𝑘
.

𝑏−∆−𝑓′
𝛤∗

𝑐𝑎

𝑏−𝑎𝑠+
𝑔𝑠𝑐
𝑔𝑚

.(𝑏−𝑎𝑚)
.       (Eqn 1) 

In eqn 1, ca represents the atmospheric CO2 concentration (in mole fractions), k (= 1.6) the 

ratio of the diffusivities of water vapor and CO2, as the 13C discrimination during diffusion of CO2 in 

air through the stomatal pore (4.4‰), am (1.8‰) the fractionation associated with CO2 dissolution 

and diffusion in the mesophyll, b and f the fractionations due to carboxylation and photorespiration, 

Г* the CO2 compensation point in the absence of mitochondrial respiration calculated following 

Brooks and Farquhar (1985), and gs/gm the ratio of stomatal and mesophyll conductance. This model 
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improves predictions of iWUE by the simplified Farquhar model of 13C discrimination by also 

accounting for the effects of mesophyll conductance and photorespiration on 13C discrimination.  

We estimated Δ13C as (δ13Ca – δ13CP) / (1 + δ13CP), where δ13Ca (δ
13C of atmospheric CO2 = -

8.37‰) was obtained as the average from June to December 2014 (the growing season before 

sampling) measured at Ushuaia (the closest available monitoring site) according to the NOAA 

database (https://gml.noaa.gov/aftp/data/trace_gases/co2c13/flask/surface/. Accessed Dec 2021). ca 

was also estimated from the Ushuaia data from NOAA 

(https://gml.noaa.gov/aftp/data/trace_gases/co2c13/flask/surface/. Accessed Dec 2021). We 

performed a linear regression between ca and δ13Ca with the available data (R2 = 0.96) and used that 

regression to estimate ca for the period June to Dec 2014, the growing season of sampled plants. 

Gamma star (Г*) was estimated as Г* = 42.7 + 1.68 (T – 25) + 0.012 (T – 25)2, with T the average 

maximum temperature in the period June to December 2014. The ratio of stomatal and mesophyll 

conductance was set constant and equal (= 0.79) to that presented by Ma et al. (2021). According to 

Ma et al. (2021), that constant is similar for a wide range of plant functional groups and is unaffected 

by long-term drought conditions. 

1.5. Oxygen isotope composition and stomatal conductance 

The relationship between δ18OP and stomatal conductance of plants growing in the same 

environment is connected with the fact that: 1) all oxygen in cellulose originates from water, 2) water 

becomes evaporatively 18O-enriched in leaves, causing an 18O-enrichment of primary photosynthetic 

products, 3) a certain fraction of the 18O-enrichment signal in photosynthetic products is retained 

during cellulose synthesis, and 4) leaf water 18O-enrichment is dependent on transpiration, which 

varies as a function of stomatal conductance, if atmospheric water demand is the same for all plants 

in the same environment (Barbour, 2007; Farquhar et al., 2007; Scheidegger et al., 2000).  

The relationship between δ18OP and stomatal conductance is uncertain when plants collected 

at different sites or at different times are compared. That complication is related to spatio-temporal 

variation of the δ18O of meteoric waters (δ18Orain) and climatic conditions (temperature, relative 

humidity, vapor pressure deficit) that affect Δ18OP (Baca Cabrera et al., 2021; Cernusak et al., 2005; 

Hirl et al., 2021; Kahmen et al., 2011). To account for the effect of δ18Orain, we calculated the 18O-

enrichment of cellulose above δ18Orain as Δ18OP = (δ18OP – δ18Orain)/(1 + δ18Orain). Geographical 

coordinates were used to obtain the mean oxygen isotopic composition of local meteoric waters 

(δ18Orain) as estimated by the ECHAM5-wiso global simulation models (Werner, 2019). This data set 

contains monthly values of δ18Orain from 15th January 1958 to 15th December 2013 with a resolution 

of longitude = 1.125° and latitude = 1.121°. Monthly data were averaged: 1) from June to December 

(1958-2013), the growing season of H. comosum; 2) from April to September (1958-2013), the rainy 
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season; and 3) April to September 2013, the rainy season previous to the sampling year. A clear 

seasonal pattern was not evident in those data. 

Δ18OP was calculated using all three δ18Orain alternatives and the corresponding statistical 

models gave all the same result. We used Δ18OP calculated with δ18Orain as the average of June-

December from 1958 to 2013 (growing season) in the statistical models. 

Parameters 

Model 1: Jun-Dec 1958-2013 2: Apr-Sept 1958-2013 3: Apr-Sept 2013 

Parameters lower est. upper lower est. upper lower est. upper 

(Intercept)  35.4 37.5 39.6 36.1 38.2 40.3 36.6 38.8 40.9 

I(1/MAP)  40.1 711.1 1382.1 70.1 739.1 1408.1 120.2 805.5 1490.8 

AMF  -0.1 -0.04 -0.01 -0.1 -0.04 -0.01 -0.1 -0.04 -0.01 

P  -11.6 -6.1 -0.6 -11.6 -6.1 -0.6 -11.4 -5.9 -0.4 

I(1/MAP) x AMF  0.9 11.4 22.0 1.0 11.5 22.0 1.1 11.6 22.2 

R2  0.78   0.79   0.8  

Δ AICnull  23.8   24.7   27  

 

1.6. Data processing 

Considering that missing data can cause biased parameter estimations (Nakagawa & 

Freckleton, 2008, 2011), we used the multiple imputation statistical approach to handle problems 

related to randomly occurring missing data. We used the function argImpute in the Hmisc package in 

R (Harrell Jr and Dupont, 2016) which allowed grouping plant data by site according to the sampling 

design. We generated imputation for missing values of P concentration (n = 8), δ18OP (n = 5) and 

Epichloë endophyte presence (n = 17; in all cases, out of a total of 238). We set the procedure to five 

multiple imputations (n.impute = 5) that gave the best statistical adjustment (i.e., R2). These five 

values were then averaged to generate a single data set without missing values. Missing AMF 

colonization values were not included in this process. There were no missing values on site level 

variables. 

The percentage of AMF colonization was determined according to McGonigle et al. (1990) 

and adjusted by subtracting observer bias prior to analyses. For that, we ran a null model (i.e., with 

no fixed effects) with observed as random and compared it with a null model without the random 

effect. The observed generated a bias as AIC was 64.6 lower in the first compared to the second case. 

We adjusted AMF colonization values by subtracting observer bias prior to analyses. One outlier 

value was replaced by the average of the corresponding site where Epichloë was not present. 
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1.7. Statistical analyses 

We first modelled site-level traits to describe the influence of environmental variables (i.e., MAP and 

MAT) or grazing severity on vegetation cover and H. comosum cover. The vegetation cover model 

was a normal error distribution generalized least squares model (gls function in nlme package) and 

included MAP, MAT, grazing severity and the interaction between MAP and grazing severity as 

predictors. The H. comosum cover model was a generalized linear model with beta error distribution 

(betareg function with beta error distribution) and included MAP, MAT, grazing severity, vegetation 

cover and the interaction between MAP and grazing severity as predictors. In both models including 

transects as random effect or not gave a very similar likelihood (LRT: 2.4e-08; p-value = 0.99 and X2 

= 4e-04; p-value = 0.98, respectively). 

Then, we modelled plant-level traits to study the influence of environmental variables or 

grazing severity on Epichloë presence, AMF colonization, nitrogen and phosphorus concentration in 

shoot biomass, Δ18OP and iWUE. Epichloë presence was analyzed with a generalized linear mixed 

model (GLMM) which accounted for individual plants nested in sites and sites nested in transects 

(Pinheiro & Bates, 2006) with binomial error distribution (Bates et al., 2015). This model included 

MAP, MAT, grazing severity and the interaction between MAP and grazing severity as main factors.  

The other models at plant-level were analyzed by using linear mixed-effects models with the 

same nesting hierarchies (i.e., individual plants nested in sites and sites nested in transects) but with 

normal distribution of errors. Specifically, all models (AMF colonization, shoot nitrogen and 

phosphorus, Δ18Op and iWUE) included MAT, MAP, grazing severity, Epichloë presence and the 

double interaction between the last three factor as fixed effects. Then, shoot nitrogen and phosphorus 

concentration, Δ18Op and iWUE models also included AMF colonization and its double interactions 

with MAP, grazing severity and Epichloë presence. Δ18Op and iWUE models included shoot nitrogen 

concentration and its double interactions with MAP, grazing severity and Epichloë presence. And the 

iWUE model included Δ18Op and its double interactions with MAP, grazing severity and Epichloë 

presence as fixed effects (Table 1). 

Before defining the initial model, we analyzed collinearity between given climatic and 

environmental variables with a Pearson correlation of 0.7 as threshold (Figure S7)(Dormann et al., 

2013). The Pearson correlation between MAP and MAT was modest (-0.38) and did not show 

collinearity in the statistical model. Main predictors were centered by subtracting the mean value 

before fitting the models. This procedure largely removed the correlations and inflated standard errors 

for the main effects and improved the interpretation of estimated parameters (Schielzeth, 2010). Then 

we selected the most parsimonious random intercepts structure (transect/site or site) for the initial 

model by comparing the Akaike information criterion of the complete models estimated with 
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restricted maximum likelihood (REML) (Zuur et al., 2009). We evaluated multicollinearity on the 

initial and final models by means of the VIF (Table S2) (Dormann et al., 2013). We performed a 

graphical inspection of the models with normal error distribution to evaluate their adequacy (Pinheiro 

& Bates, 2006; Zuur et al., 2009). When necessary, the variances were modelled by using specific 

variance functions (Table S3). We did not find spatial correlation among residuals. In the case of the 

Epichloë presence model (binomial-Bernoulli model), the dispersion parameter indicated no 

overdispersion (phi = 0.37). The initial models estimated by ML were reduced by removing non-

significant terms in a stepwise fashion (single term deletion strategy) according to likelihood ratio 

tests (Table 1 and Table S4-5) (Zuur et al., 2009). Multimodel inference performed with dredge 

function (MuMIn pakage in R; Barton, 2016) produced the same results. When Epichloë, grazing 

severity or an interaction involving them were significant, least squares means adjusted by “sidak” 

method and significant p-value < 0.05 was used to compare means between levels of factors or slopes 

(emmeans and emtrends functions, respectively with emmeans package; Lenth, 2017) (Table S6). To 

validate the strength of fixed effects included in the minimum model, we calculated the difference 

between the AIC of the null and the minimum model (null model means the same model as the 

minimum model excluding all fixed effects; ΔAIC). We also present the conditional and marginal 

coefficient of determination (R2c and R2m, respectively from r.squaredGLMM function in MuMIn 

pakage; Barton, 2016). A summary with traits of the models is presented in Table S3. 

Being aware of the effects of the atmospheric relative humidity (RH) and temperature on 

Δ18OP (e.g., Hirl et al., 2021), we graphically evaluated the relationship of Δ18OP with MAP for iso-

atmospheric-relative humidity (iso-RH) and for isothermal gradients. The iso-atmospheric-relative 

humidity transect was defined as the range between the mean value of RH (58.6%) ±2% which 

included 12 sites with ~300 to 700 mm MAP (Figure S2). The isothermal transect was defined as 8.4 

±0.25°C and included 10 sites distributed along the entire MAP gradient (Figure S3). All analyses 

and figures were made in the R-cran environment; version 3.6.1 (R Development Core Team, 2019) 

and with RStudio; version 1.2.1335 (RStudio, 2019). 
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2. APPENDIX S2. SUPPORTING TABLES 

Table S1: Criteria for the classification of sites in terms of the grazing conditions (mild and severe) according to vegetation cover and floristic 

composition. The first column shows the environments classified according to mean annual precipitation (MAP). Using a scenario of mild grazing as a 

reference condition, we established the expected abundance changes of both palatable and unpalatable forage species for each environment. The overall 

idea is that, with grazing intensity, valuable forage species tend to diminish while unpalatable species tend to increase (Based on Bonvissuto et al., 2008; 

Siffredi et al., 2011). 

 

Environment MAP Vegetation cover (%) Species present under mild grazing 

Mild Severe Grasses Schrub 

Humid >650 ≥ 70 < 70 Festuca pallescens, Poa ligularis, 

Hordeum comosum, Carex spp. 

 

Subhumid 650-500 ≥ 60 < 60 

Semiarid 500-200 ≥ 50 < 50 Poa ligularis, Hordeum comosum, 

Bromus setifolius, Pappostipa speciosa,  

Senecio filaginoides, Azorella 

prolifera, Adesmia volcksmannii Arid <200 ≥ 45 < 45 
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Table S2: VIF values of the initial and final regression models for Hordeum comosum analyses. Rows show the models for: vegetation cover, H. 

comosum cover, Epichloë presence, AMF colonization, nitrogen (N) and phosphorus (P) concentration in shoot biomass, Δ18OP and iWUE. Columns 

show the VIF or GVIF (generalized VIF) depending on the model. In the cases where GVIF was calculated, we determined the threshold as 

10^(1/(2*dfpredictor) where dfpredictor = vif(model)[,2]. VIF and GVIF were obtained with vif function in car package in R. When the final model had only 

one predictor (i.e., H. comosum cover, vegetation cover and Epichloë presence), VIF values made no sense.  

  Initial model Final model 

H. comosum cover (%)  GVIF Df GVIF^(1/(2*Df)) Threshold GVIF Df GVIF^(1/(2*Df)) Threshold 

 poly(MAP, 2)  2.957833 2 1.311425 1.778279     

 Grazing  34.006648 1 5.831522 3.162278     

 MAT  2.137199 1 1.461916 3.162278     

 Veg_cover  1.247686 1 1.116999 3.162278     

 poly(MAP, 2):

Grazing 

67.184950 2 2.862978 1.778279     

Vegetation cover (%)  VIF    VIF    

 MAP 2.344111        

 Grazing  1.741470        

 MAT   1.341390        

 MAP:Grazing 2.203441        

Epichloë presence  VIF    VIF    

 MAP 2.723662        

 Grazing  1.804258        

 MAT  1.315208        

 MAP:Grazing 2.204771        

AMF colonization (%)  VIF    VIF    

 MAP 11.503436    1.221396    

 Epichloë 4.260555    1.221396    

 Grazing  7.787651        

 MAT  1.693648        

 MAP: Epichloë 8.900665        

 MAP:Grazing 2.769279        
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Table S2: cont. 

  Initial model Final model 

 Epichloë: Grazing 9.221692        

Shoot N (%)  GVIF Df GVIF^(1/(2*Df)) Threshold GVIF Df GVIF^(1/(2*Df)) Threshold 

 Epichloë  5.048760 1 2.246945 3.162278 1.938114 1 1.392162 3.162278 

 poly(MAP, 2)  66.877958 2 2.859702 1.778279 13.35886 2 1.911800 1.778279 

 Grazing  11.600373 1 3.405932 3.162278     

 AMF  6.889240 1 2.624736 3.162278     

 MAT 1.776549 1 1.332872 3.162278     

 Epichloë:poly(MAP, 2)  43.661231 2 2.570538 1.778279 10.96992 2 1.819914 1.778279 

 Epichloë:Grazing 10.062159 1 3.172091 3.162278     

 poly(MAP, 2):Grazing 21.600409 2 2.155835 1.778279     

 Epichloë: AMF  5.622520 1 2.371185 3.162278     

 poly(MAP, 2): AMF  2.334877 2 1.236135 1.778279     

 Grazing:AMF  2.678675 1 1.636666 3.162278     

Shoot P (%)  VIF    VIF    

 Epichloë   3.823421    1.152141     

 MAP   6.683975    2.61137    

 Grazing   4.883170    1.551133    

 AMF   5.606159        

 MAT  1.524205        

 Epichloë:MAP  5.403892        

 Epichloë:Grazing  5.786741        

 MAP:Grazing  2.684131    2.306528    

 Epichloë: AMF   4.561121        

 MAP: AMF   1.602869        

 Grazing:AMF   2.429048        

Δ18Op (‰)  GVIF Df GVIF^(1/(2*Df)) Threshold GVIF Df GVIF^(1/(2*Df)) Threshold 

 Epichloë  4.017195 1 2.004294 3.162278     

 poly(MAP, 2)  0.780698 2 2.135084 1.778279 7.904786 2 1.676766 1.778279 

 Grazing  6.164886 1 2.482919 3.162278 3.413203 1 1.847485 3.162278 

 AMF  5.981332 1 2.445676 3.162278 1.160131 1 1.077094 3.162278 
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Table S2: cont. 

  Initial model Final model 

Δ18Op (‰)  GVIF Df GVIF^(1/(2*Df)) Threshold GVIF Df GVIF^(1/(2*Df)) Threshold 

 Shoot N 7.341899 1 2.709594 3.162278     

 MAT 1.472868 1 1.213618 3.162278     

 Epichloë:poly(MAP, 2)   13.822666 2 1.928182 1.778279     

 Epichloë:Grazing 4.434691 1 2.105871 3.162278     

 poly(MAP, 2):Grazing  18.878645 2 2.084456 1.778279 16.65157 2 2.020058 1.778279 

 Epichloë: AMF  5.568388 1 2.359743 3.162278     

 poly(MAP, 2): AMF  1.957660 2 1.182863 1.778279 1.188961 2 1.044220 1.778279 

 Grazing:AMF  2.429970 1 1.558836 3.162278     

 Epichloë: Shoot N 7.732291 1 2.780700 3.162278     

 poly(MAP, 2): Shoot N  2.233661 2 1.222515 1.778279     

 Grazing: Shoot N 2.883677 1 1.698139 3.162278     

iWUE  VIF    VIF    

 Epichloë  4.654459        

 MAP  10.349950    2.965429    

 Grazing  8.685052    1.504468    

 AMF  6.903271    1.186036    

 Shoot N 6.434812    1.924508    

 Δ18Op 8.314657    1.267469    

 MAT 1.651984        

 Epichloë:MAP  7.591687        

 Epichloë:Grazing 9.818894        

 MAP:Grazing 3.150305    2.523829    

 Epichloë: AMF  6.114483        

 MAP: AMF  1.868215    1.091889    

 Grazing:AMF  2.756844        

 Epichloë: Shoot N 6.220056        

 MAP: Shoot N  2.026201        

 Grazing: Shoot N 3.025341    1.921706    

 Epichloë: Δ18Op 5.706201        

 MAP: Δ18Op 3.901442        

 Grazing: Δ18Op 2.444701        
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TABLE S3: Best-fitting regression models for Hordeum comosum analyses. Models included vegetation cover, H. comosum cover, Epichloë 

presence, AMF colonization, nitrogen (N) and phosphorus (P) concentration in shoot biomass, and Δ18OP and iWUE determined from cellulose extracted 

from H. comosum shoot biomass (see Methods). Columns show the analysis level and characteristics of each model: class, random hierarchies, the family 

distribution and the link function, variance function, number of observations (n) and parameters (k), and intra class correlation (ICC). 

 

Response variable Level Class Random hierarchies Family Link Variance function n k ICC* 

Vegetation cover (%) Site gls no gaussian identity Exp(MAP) 30 4  

H. comosum cover (%) Site betareg no beta cauchit  29 4  

Epichloë presence Plant glmer 1 | Site binomial logit  238 3  

AMF colonization (%) Plant lme 1 | Transect/Site gaussian identity Exp(MAT) 220 7 0.25/0.12 

Shoot N (%) Plant lme 1 | Transect/Site gaussian identity Power(MAT); Exp(MAP) 238 11 0.19/0.19 

Shoot P (%) Plant lme 1 | Transect/Site gaussian identity Exp(MAT) 238 9 0.28/0.23 

Δ18Op (‰) Plant lme 1 | Site gaussian identity Ident(1 |Herbivory) 220 12 0.64 

iWUE Plant lme 1 | Site gaussian identity Power(MAP) 220 12 0.63 

* ICC: Intraclass correlation. The relative values of individual- and group-level variances, σ2
α/(σ

2
α + σ2

y), which ranges from 0 - if the Site grouping (in 

this case) conveys no information- to 1 -if all plants in a site are identical. σ2α and σ2y are random and residual variances, respectively (Gelman & Hill, 

2007). 
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TABLE S4 Likelihood ratio test of regression models for Hordeum comosum analyses. Columns show the models for: vegetation cover, H. 

comosum cover, Epichloë presence and AMF colonization, nitrogen (N) and phosphorus (P) concentration, Δ18OP and iWUE. Rows show the fixed 

factors, the ΔAIC (AIC null model - AIC best model), the marginal and conditional coefficient of determination (R2m and R2c, respectively). Cells 

show the probabilities associated with the corresponding LRT statistics. Grey shadow cells indicate factors not included in the corresponding model. 

Bold numbers indicate significance at p-value < 0.05. 

 
H. comosum 

cover (%) 

Vegetation 

cover (%) 

Epichloë 

presence 

AMF coloni-

zation (%) 
Shoot N (%) Shoot P (%) Δ18Op (‰) iWUE 

Vegetation cover (%) 0.05        

MAP* (mm) <0.0001 0.01 0.001 0.0001 0.028 0.87 <0.0001 0.07 

MAT (°C) 0.27 0.27 0.93 0.27 0.35 0.87 0.46 0.47 

Grazing 0.34 0.12 0.95 0.08 0.58 0.99 0.15 0.30 

Grazing x MAP 0.36 0.93 0.15 0.19 0.69 0.0001 0.017 0.02 

Epichloë    0.02 0.01 0.0003 0.35 0.27 

Epichloë x Grazing    0.27 0.47 0.96 0.08 0.69 

Epichloë x MAP    0.08 0.01 0.50 0.55 0.15 

AMF (%)     0.62 0.53 0.03 0.91 

Epichloë x AMF     0.69 0.61 0.75 0.15 

Grazing x AMF     0.08 0.33 0.96 0.48 

MAP x AMF     0.37 0.77 0.046/0.02** 0.06 /0.018** 

Shoot N (%)       0.61 0.30 

Shoot N x Epichloë        0.24 0.41 

Shoot N x Grazing       0.93 0.008 

Shoot N x MAP       0.88 0.60 

Δ 18Op (‰)        <0.0001 
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TABLE S4: cont.  

 
H. comocum 

cover (%) 

Vegetation 

cover (%) 

Epichloë 

presence 

AMF coloni-

zation (%) 
Shoot N (%) Shoot P (%) Δ18Op (‰) iWUE 

Δ18Op x Epichloë        0.21 

Δ18Op x Grazing        0.84 

Δ18Op x MAP        0.62 

ΔAIC† 23.7 11.8 12.35 27.66 15.48 21.42 21.11 19.8 

R2m 0.32 0.31 0.28 0.32 0.25 0.28 0.50 0.46 

R2c -------------- --------------- 0.81 0.57 0.53 0.64 0.82 0.798 

*poly(MAP, 2) in H. comosum cover, shoot nitrogen concentration and Δ18Op models. ** Excluding non-important predictor, the p-value decreased from 

0.06 to 0.0018. †ΔAIC (AIC null model - AIC best model) where null model is the same model without fixed predictors. As AMF contains NAs, when 

AMF was not a significant predictor (Shoot nitrogen and phosphorus concentration), we run the model again using the whole dataset (Table S5).  

 



16 
 

Table S5: Likelihood ratio test of regression models for Hordeum comosum analyses. Columns show the models for shoot nitrogen and 

phosphorus concentration. Rows show the fixed factors and the last one the ΔAIC (AIC null model - AIC best model). Cells show the probabilities 

associated with the corresponding LRT statistics. These models excluded AMF as predictor and are justified in the presence of NAs (18) in AMF. As 

AMF was not important, the model excluding AMF included all observations. Bold numbers indicate significance at p-value < 0.05. 

 Shoot N (%) Shoot P (%) 

MAP* (mm) 0.026 0.71 

MAT (°C) 0.41 0.82 

Grazing 0.77 0.89 

Epichloë 0.01 < 0.0001 

Epichloë x Grazing 0.79 0.81 

Epichloë x MAP 0.008 0.46 

Grazing x MAP 0.62 0.0002 

ΔAIC 16.13 26.17 

*poly(MAP, 2) in shoot nitrogen concentration model. 
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Table S6: Post-hoc comparisons of regression models for Hordeum comosum analyses. Rows show the models for: shoot nitrogen (N) and 

phosphorus (P) concentration, iWUE and Δ18OP. Columns show the fixed factor, the slope of the numeric factor when suitable, the standard error (SE), 

the lower and upper limit of the 95% confidence interval (lower.CI and upper.CI, respectively) and the group (where different letters show significant 

differences between the levels of the corresponding factor with p-value < 0.05).  

 

Shoot N Epichloë Degree MAP SE lower.CI upper.CI Group  

 Absent linear     0.0011225  0.0002907   0.0004674  0.0017775 a    

 Present     0.0005073  0.0001615   0.0001433  0.0008713 b       

 Absent quadratic  0.0000039  0.0000012   0.0000012  0.0000066 a       

 Present  -0.0000006  0.0000008  -0.0000025  0.0000013 b       

Shoot P Grazing   MAP slope     

 Mild    -0.0001998 5.36e-05 -0.000328 -0.0000715 a       

 Severe     0.0001128 4.30e-05 0.000010 0.0002155 b       

 Epichloë  Estimated     

 Absent   0.1596299  0.0168719  0.0895027  0.2297571 a       

 Present   0.1958167  0.0153380  0.1320649  0.2595686 b       

iWUE Grazing   MAP slope     

 Mild    0.0206127 0.0057357 0.0070016 0.0342237 a       

 Severe     0.0005273 0.0048507 -0.0109836 0.0120383 b       

 Grazing   Shoot N slope     

 Mild    -6.592491 2.027127 -11.163172 -2.021810 a       

 Severe     2.639470 1.824894 -1.475225 6.754164 b       

Δ18OP Grazing      MAP     

 Mild   linear     0.0089617  0.0076958 -0.0083920 0.0263154 a       

 Severe        -0.0069360  0.0034044 -0.0146127 0.0007407 a       

 Mild   quadratic  -0.0000381  0.0000262 -0.0000968 0.0000206 a       

 Severe     0.0000497  0.0000151 0.0000160 0.0000835 b       
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3. APPENDIX S3. SUPPORTING FIGURES 

 

 

FIGURE S1 Conceptual analytical framework of the study. We sampled four latitudinally 

distributed west-east aridity transects in north-west Patagonia, Argentina, considering sites with 

mild and severe herbivory by domestic and wild grazers, to explore the relationship between 

the symbiotic status with foliar fungal endophytes (Epichloë) and root AMF and eco-

physiological traits of the native perennial grass Hordeum comosum. Climatic context was 

mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT). 

H. comosum plants were not found in three sites in the most humid and two sites in the most 

arid range of the transects (crossed circle symbol). Analyzed plant traits included N and P 

concentration, intrinsic water use-efficiency (iWUE, the ratio of net photosynthesis and 

stomatal conductance to water vapor), and 18O-enrichment of shoot cellulose (18Op). Bariloche 

and Esquel are two main cities indicated as BRC and EQS. 
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FIGURE S2 (A) relation between mean annual precipitation (mm, MAP) and relative humidity 

(%, RH) for the different sites. The full line shows the fit for the linear regression model. 

Pearson correlation between both variables was 0.84. (B and C) 18O-enrichment of cellulose 

(Δ18OP = (δ18OP – δ18Orain)/(1+ δ18Orain)) in shoot biomass of H. comosum plants in relation with 

(B) mean annual precipitation (MAP, mm) and (C) relative humidity (RH, %). Violet dots show 

Δ18OP values of H. comosum plants growing in sites within the iso-RH of 58.6% (the mean 

value  2%). Green dots show Δ18OP values of H. comosum plants growing in arid sites (<200 

mm MAP). In all cases, symbols indicate H. comosum plants from sites with severe (gray 

squares) and mild (black triangles) level of grazing. 
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FIGURE S3 (A) oxygen isotope composition of meteoric waters (δ18Orain) in relation to mean 

annual precipitation (mm). (B) oxygen isotope composition of H. comosum shoot cellulose, 

(δ18OP) in relation to mean annual precipitation (MAP, mm). (C) 18O-enrichment of cellulose 

(Δ18OP = (δ18OP – δ18Orain)/(1+ δ18Orain) in relation to δ18OP. The full line shows the fit for the 

linear regression model. The dashed line shows the 1:1 relation. (D) 18O-enrichment of cellulose 

(Δ18OP) in relation to mean annual precipitation (MAP, mm). Violet dots in (B) and (D) denote 

plants growing in sites within an isothermal of 8.4°C ( 0.25°C, i.e., from mean MAT plus 

0.5°C (from 8.15 to 8.65°C). In (A, B and D) vertical dotted lines delimit aridity zones by MAP 

range: humid (>650 mm), dry subhumid (650 to 500 mm), semiarid (500 to 200 mm), and arid 

(<200 mm). Note the small site-by-site variation of δ18Orain (A) in comparison with the variation 
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of Δ18OP (B). In all cases, symbols indicate H. comosum plants from sites with severe (gray 

squares) and mild (black triangles) level of grazing.  
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FIGURE S4 Proportion of Epichloë symbiotic plants per site in relation to mean annual 

precipitation (MAP, mm). Symbols show H. comosum plants from sites with severe (squares) 

and mild (triangles) levels of grazing. Full line and shadow show model fit and 95% prediction 

interval, respectively. Vertical doted lines delimit the environments determined by MAP range: 

humid (>650 mm), dry subhumid (650 to 500 mm), semiarid (500 to 200 mm), and arid (<200 

mm). 
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FIGURE S5 18O-enrichment of cellulose (Δ18OP) in shoot biomass of H. comosum plants in relation 

with the degree of arbuscular mycorrhizal colonization (AMF, %). Each panel shows an environment 

corresponding to (A) arid (MAP <200 mm), (B) semiarid (MAP 200 – 500 mm), (C) subhumid (MAP 

500 – 650 mm) and (D) humid (MAP > 650 mm). Symbols show individual plants. Different sites are 

distinguished by color. Full and dashed black lines show the fit for mild and severe grazing conditions, 

respectively, according to the regression model presented in Table 1 and Table S2-S6 for the MAP 

and AMF values according to the corresponding environment. Shadows show 95% prediction 

intervals. Dash colored lines show the fit for the corresponding site (i.e., random effect).  
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FIGURE S6 iWUE of cellulose in shoot biomass of H. comosum plants in relation with the degree 

of arbuscular mycorrhizal colonization (AMF, %). Panels: (A) arid (MAP <200 mm), (B) semiarid 

(MAP 200 – 500 mm), (C) subhumid (MAP 500 – 650 mm) and (D) humid (MAP > 650 mm) 

environments. Symbols show individual plants. Different sites are distinguished by color. Full and 

dashed black lines show the fit for mild and severe grazing conditions, respectively, according to the 

regression model presented in Table 1 and Table S2-S6 for the MAP and AMF values according to 

the corresponding environment. Shadows show 95% prediction intervals. Dash colored lines show 

the fit for the corresponding site (i.e., random effect).   
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FIGURE S7 Pearson correlation between climatic, geographical coordinates, elevation, the enhanced 

vegetation index (EVI) and soil [N concentration in the rhizosphere (RhizoX.N) and potential soil 

water availability (PWA.X)] variables. The climatic variables precipitation (Prec), potential 

evapotranspiration (PET) and temperatures (Tmin, Tmax and MeanTemp) were calculated for the 

annual average and for the growing season of H. comosum [WorldClim and GrowingWorldClim, 

respectively; obtained from 50-year climatic means (1950-2000) of the WorldClim database]. The 

same climatic variables were estimated for the sampling-year and sampling-year growing season 

(2014 and Growing2014, respectively). The size of the circle and the color intensity indicate the value 

of the correlation following the reference below. Filled cells indicate highly correlated variables. 



26 
 

Variables used in the corresponding statistical models were mean annual precipitation 

(PrecWorldClim) and mean annual temperature (MeanTempWorldClim; both in blue labels). See 

Method S1 for details about the variables. 
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