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1. Sources of yield potential data derived from top-down and bottom-up approaches 26 

 27 

1.1 GAEZ 28 

The GAEZ was originally developed to provide a framework for the characterization of climate, 29 

soil, and terrain conditions relevant to agricultural production 1,2. The GAEZ version 3.0, 30 

developed by FAO and IIASA, incorporates global assessments of maximum potential (i.e., Yp 31 

and Yw) and agronomically attainable yield for several crops (http://www.fao.org/nr/gaez/en/). 32 

At the time of submission of this manuscript, GAEZ version 3.0 was the latest available source 33 

of yield potential estimations. Details about GAEZv3 can be found in IIASA/FAO 2. Briefly, 34 

GAEZ methodology to estimate yield potential and attainable yield consists of a generic 35 

simulation model that combines weather, soil, terrain, and cropping system information 36 

(Supplementary Table S1). Yield simulations are performed in cell-grids (ca. 5 arc‐minute x 30 37 

arc‐second resolution near the equator) for different timeframes (based on historical, current, and 38 

future climate), input levels (high, intermediate, and low), and water regime (rainfed, rainfed 39 

with water conservation, and irrigation). To simulate different crops, the model uses specific 40 

crop parameters including length of growth cycle (days from emergence to full maturity), length 41 

of yield formation period, maximum rate of photosynthesis at prevailing temperatures, leaf area 42 

index at maximum growth rate, harvest index, crop adaptability group, sensitivity of crop growth 43 

cycle length to heat provision, development stage specific crop water requirements, and 44 

coefficients of crop yield response to water stress 3. For each grid-cell, the starting and ending 45 

dates of the crop growth cycle are determined using an algorithm that computes the best possible 46 

crop yields. This algorithm does not consider the complexity of cropping system such as the co-47 

existence of several crop sequences within the same geographic area and year. In irrigated 48 

http://www.fao.org/nr/gaez/en/
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conditions, the crop growth cycle length is ‘optimized’ so that the crop cycle coincides with the 49 

period of time when temperature allows crop growth. For rainfed conditions, a water-balance 50 

model is used to determine the beginning and duration of the period when water supply is 51 

sufficient to sustain crop growth. The methodology accounts for yield reduction due to 52 

limitations imposed by soil and terrain conditions based on the soil data contained in the 53 

Harmonized World Soil Database 4. For our evaluation, we retrieve Yp (or Yw) estimations for 54 

maize, wheat, rice, and other crops available in the GAEZ “Agro-climatic yield” dataset that 55 

assumes the highest input level and uses the baseline climatic scenario, which includes the 1961-56 

1990 period. Values of yield potential per site, climate zone, and country (or region) are shown 57 

in Supplementary Tables S2-S3.  58 

 59 

1.2 AgMIP ensemble 60 

The AgMIP initiative aims to improve agricultural systems data and models and to advance their 61 

use to support decision making from farm to national to global scales 5. It follows a multi-model 62 

approach that uses harmonized datasets and protocols to evaluate and improve crop model 63 

performance (Supplementary Table S1). The Global Gridded Crop Model Inter-comparison 64 

(GGCMI) component of AgMIP provides simulation results from 14 global crop modeling 65 

groups that contributed with simulations for maize, wheat, rice, and other crops following a 66 

common protocol 6-8. Briefly, each of the crop modeling groups provided global simulations in 67 

cell-grids of 30 arc‐minute resolution (~3,000 km2 at equator), separately for (i) several gridded 68 

weather data sources (e.g., WFDEI, GPCC, AgMERRA, and WATCH.GPCC), (ii) fertilizer 69 

assumptions (default, fullharm, and harm-suffN), and (iii) water regime (rainfed and irrigated). 70 

The default scenario used the standard assumption on growing seasons and fertilizer inputs the 71 
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crop modelers typically use. In the fully harmonized configuration, fullharm, all modelers 72 

assumed the same fertilizer and growing season inputs (i.e., sowing and harvest dates). Finally, 73 

in the harm-suffN scenario (also known as “harmnon”), modelers used the same growing season 74 

as in the fullharm scenario but in this case, assuming no nutrient limitations. Growing season 75 

data, including crop intensity, water regime, and sowing window, was compiled from two 76 

existing gridded global crop calendars, MIRCA2000 9 and SAGE2 10. Each modeling group was 77 

asked to use the soil parameterization that they typically use. Some of the models included in the 78 

ensemble were developed for field-scale applications (e.g., CGMS-WOFOST, EPIC-based 79 

models, pDSSAT, pAPSIM), while others were derived from global-scale models by 80 

incorporating field-scale processes (e.g., LPJ-GUESS, LPJmL, ORCHIDEE-crop, PEGASUS). 81 

Hence, model calibration was performed against actual yield reported at field and/or national 82 

scale (e.g., WOFOST, EPIC-BOKU, pAPSIM), with some exceptions where models were not 83 

calibrated (e.g., CLM-crop, LPJ-GUESS, ORCHIDE-crop) 6. Similar to GAEZ, critical aspects 84 

of the model calibration that are needed to obtain accurate estimates of yield potential such as (i) 85 

the use of yield data from experiments that were explicitly managed to achieve yield potential, 86 

(ii) the source of climate and soil data used to perform the calibration, and/or (iii) information 87 

about the regions for which the models have been calibrated are generally poorly (or not) 88 

documented. Simulated yield potential provided by the modeling groups are then summarized, 89 

using either the mean or median of simulated values e.g., 11,12,13. 90 

 91 

We downloaded yield estimations based on the harm-suffN assumptions for rainfed and irrigated 92 

maize, rice, wheat, and other crops which is the dataset that gets closest to our definition of Yp 93 

and Yw (Data are available at https://zenodo.org/). Following Müller, et al. 7, we used 94 

https://zenodo.org/
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simulations performed with the AgMIP climate forcing dataset AgMERRA, which was created 95 

based on the NASA Agriculture Modern-Era Retrospective Analysis for Research and 96 

Applications (MERRA) to provide consistent, daily time series over the 1980-2010 period with 97 

global coverage of climate variables required for agricultural models 98 

https://data.giss.nasa.gov/impacts/agmipcf/agmerra/; 14. Following the typical procedure in crop 99 

model ensembles e.g., 11,12,13, we computed the median yield across the gridded models, 100 

obtaining one ensemble map for each combination of water regime and crop. Yield potential was 101 

not available for AgMERRA for some crop-water regime combinations (Supplementary Table 102 

S4). Values of yield potential per site, climate zone, and country (or region) are shown in 103 

Supplementary Table S2-S3.  104 

 105 

1.3 Global Yield Gap Atlas (GYGA) 106 

The GYGA provides estimates of untapped crop production potential on existing farmland based 107 

on current climate and available soil and water resources (Supplementary Table S1). GYGA 108 

utilizes standard protocols for assessing Yp, Yw, and yield gap based on locally calibrated crop 109 

models and best available sources of weather, soil, and management data. A tiered approach is 110 

follow to give preference to high-quality data (e.g., measured weather data), moving gradually to 111 

other less reliable data sources (e.g. gridded weather data) when data are not available 15. In the 112 

case of GYGA, less than 3% of the total buffers relied on gridded weather for model simulations. 113 

 114 

Best sources of data and information on the cropping system context is provided by local experts 115 

15. GYGA protocols (Grassini et al., 2015; Van Bussel et al., 2015) have been applied 116 

consistently across crops and countries. In contrast to top-down approaches, GYGA simulates 117 
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Yp and Yw for a number of sites strategically selected for a given crop in a given country. Site 118 

selection is guided by a protocol that seeks to use the fewest number of sites to achieve crop 119 

coverage of at least 50% of the national cultivated area (van Bussel et al., 2015). Briefly, this 120 

protocol builds on the spatial framework developed by van Wart, et al. 16 and van Bussel, et al. 121 

17, which delineates climate zones (CZs) with similar biophysical conditions. Each CZ 122 

corresponds to a geographic area with a unique combination of three biophysical attributes that 123 

govern crop yield and its inter-annual variability: (i) annual total growing degree-days, which 124 

determines the length of crop growing season (10 classes), (ii) aridity index, which largely 125 

defines the degree of water limitation in rainfed cropping systems (10 classes), and (iii) annual 126 

temperature seasonality, which differentiates between temperate and tropical climates (3 classes) 127 

(Supplementary Figure S1A). Within the studied country, CZs with >5% of total national 128 

harvested area are selected (Supplementary Figure S1B, C). Within each selected CZ, 129 

candidate sites with measured weather data are selected and buffer zones of 100-km radius (ca. 130 

7800 km2) are created around those sites to denote the inference area for weather data. The 131 

buffer zones are "clipped" by the CZ boundaries to ensure that each buffer is located within a 132 

unique CZ (Supplementary Figure S1D). Buffers are sequentially selected based on their 133 

contribution to national crop harvested area until ca. 50% national crop area coverage is 134 

achieved. When measured weather data are missing in regions with high crop area density, 135 

additional buffers are created for these regions and NASA-POWER gridded weather data are 136 

used for model simulations. This approach for the selection of representative sites helps to 137 

reduce the number of locations for which site-specific data on weather, soils, and cropping 138 

systems are required, allowing to focus on quality of the underpinning data 18. An example of site 139 
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selection following the GYGA protocol is shown below for rainfed maize in the United States 140 

(Supplementary Figure S1). 141 

 142 

After site selection, yield potential is simulated for the dominant cropping systems and soil types 143 

within each buffer using a minimum of 10 (irrigated) or 20 years of daily weather data (rainfed) 144 

to obtain reliable estimates of Yp (irrigated) or Yw (rainfed) and their variability 15. Cropping 145 

system information is provided by local agronomist and includes crop sequence, water regime, 146 

sowing window, and crop cycle duration. Separate simulations are performed for each crop cycle 147 

in those cropping systems with two or three crop cycles on the same piece of land during a 12-148 

month period. We note that direct cross-validation of GYGA results with measured yields in 149 

research stations and/or highest yields in farmer fields is difficult because the latter may be 150 

obtained under the best combination of climate and soil in specific site-years within a region 151 

and/or with unusual crop sequences, providing an estimate of Yp that is not representative for the 152 

region 19. In contrast, and as explained previously, GYGA uses well-validated models, coupled 153 

with long-term weather and information on dominant soils and crop sequences, to estimate yield 154 

potential and yield gaps that are relevant to the dominant biophysical and agronomic background 155 

in each region 15. Contrarily to the top-down approaches, instead of using a single model 156 

globally, models are selected for each particular region based on their ability to reproduce locally 157 

measured yield in well-managed crops 19. Crop models were calibrated using data sets from field 158 

studies where crops were grown without nutrient limitations and free of biotic adversities such as 159 

weeds, pests, and diseases e.g., 20,21-30. Supplementary Figure 1 shows the evaluation of the 160 

models used for simulating maize, rice, and wheat in GYGA based on measured yield data 161 

collected from well-managed irrigated and rainfed environments where nutrient limitations and 162 
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incidence of biotic stresses were minimized. The evaluation includes for maize simulations using 163 

Hybrid-Maize model in USA, Brazil, Indonesia, and sub-Saharan Africa (SSA) 20,21,31,32, 164 

CERES-maize in Argentina and Uruguay 22,23,33-35, WOFOST in Europe 36-38, and SSM in Iran 32, 165 

(ii) wheat simulations using CERES-wheat in Argentina and Uruguay 22,35,39,40, APSIM in 166 

Australia 25,41,42,  WOFOST in Europe and Middle East and North Africa 24, and SSM in USA43 167 

and Iran32, and (iii) rice simulations using ORYZA in China, Indonesia, USA, SSA, and Brazil 168 

27,28,32,44 and SSM in Iran32. Model coefficients related with crop development were calibrated to 169 

portray the observed phenology of the dominant cultivars grown in each region. To the extent it 170 

was possible, models were tested across a wide range of environments in each country or region, 171 

avoiding site-year calibration of internal model coefficients. Simulated yields reproduced well 172 

the range of measured yields across a wide range of environments and yield levels, ranging from 173 

near crop failure in harsh environments with severe water limitation to well-watered irrigated 174 

environments with high Yp. Evaluation of models on their ability to reproduce measure crop 175 

phenology, leaf area, biomass, and other agronomic traits have been published elsewhere (see 176 

aforementioned references). 177 

 178 

Simulated Yp and Yw as well as shapefiles with buffers and CZs polygons for maize, rice, and 179 

wheat were downloaded from the GYGA website (www.yieldgap.org). Values of yield potential 180 

per site, climate zone, and country (or region) are shown in Supplementary Tables S2-S3.  181 

http://www.yieldgap.org/
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 182 
 183 
Supplementary Figure S1: Selection of locations, buffers, and climate zone. Example of 184 
strategic selection of climate zones, locations, and buffers followed by Global Yield Gap Atlas 185 
(GYGA; www.yieldgap.org) to estimate yield potential on a relatively small number of sites that 186 
represent major crop producing regions. (A) Climate zones with fairly similar weather 187 
conditions, (B) maize harvested area, (C) selected climate zones with >5% of national harvested 188 
area, and (D) locations and buffers inside the selected climate zones.  189 
 190 

 191 

http://www.yieldgap.org/
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Supplementary Table S1. Summary of most relevant features of the databases used in this study to compare top-down versus 192 
bottom-up approaches. 193 

Features Global Agro-Ecological Zones 
(GAEZ) 

Agricultural Model Intercomparison 
and Improvement Project (AgMIP) 

Global Yield Gap Atlas  
(GYGA) 

Approach Top-down Top-down Bottom-up 
Crop model  Single, generic model based on 

monthly weather data that uses generic 
crop parameters to simulate different 
crops (Kassam, 1977). The model is 

not locally calibrated. 

Combination of (i) generic and crop-
specific, (ii) site-based process and 

ecosystem, and (iii) calibrated and non-
calibrated models (Table S3). 

Crop-specific model, simulates crop 
growth on a daily step. To the extent it is 
possible, models are calibrated for each 

study region. 

Data source 
   

 Weather Gridded weather (Climate Research 
Unit and GPCC) 

Gridded weather data (including, but 
not limited, to AgMERRA, WFDEI, 

and GPCC) 

Tier selection approach: weather station 
data (1st option), corrected measured data 

(2nd option) & NASA gridded data (3rd 
option). 

 Soil Global gridded soil database 
(Harmonized World Soil Database, 

FAO/IIASA/ISRIC, 2009). 

Different models use different soil 
databases and, in some cases, soil was 

ignored or not documented 

Tier selection approach: high-quality 
national soil maps (1st option), global soil 
databases (2nd option) & expert opinion 

(3rd option). 
 Cropping system Crop cycle length is determined in 

silico by optimizing crop cycle with 
the length of growing season. 

Cropping system is incorrect or 
oversimplified in many cases. 

Coarse global crop calendars, e.g., 
MIRCA2000 (Portmann et al., 2010) 

and SAGE (Sacks et al., 2010). 
Cropping system is incorrect of 
oversimplified in many cases. 

Cropping system data provided by local 
experts, including crop sequence, sowing 

date, crop cycle duration, and water 
regime. 

Time period 30 years (1961-1990) 31 years (1980-2010) Minimum of 10 (irrigated) and 20 years 
(rainfed), using the most updated data 

that is available after 1980. 
Finest level of 
spatial resolution 

Grids of ca. 100 km2 near the equator Grids of ca. 3,000 km2 at equator Buffers around weather stations, with 
border clipped by climate zones, and size 

varying from 200 to 31,000 km2. 
Upscaling method No upscaling is needed as yield 

potential is simulated for each grid 
No upscaling is needed as yield 

potential is simulated for each grid 
Uses a climate zone scheme for upscaling 

yield from buffer to climate zone, and 
then from climate zone to country or 

continental levels. 
References http://www.fao.org/nr/gaez/en/; 

Fischer et al., 2002, IIASA/FAO, 2012 
https://agmip.org/; Elliot et al., 2015; 

Muller et al., 2017, 2019 
http://www.yieldgap.org/; Grassini et al., 

2015; van Bussel et al., 2015. 
194 
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Supplementary Table S2. Agreement in yield potential estimations between top-down and bottom-up approaches. Comparison 195 
between yield potential  estimations derived from the Global Yield Gap Atlas (GYGA) and the Global Agro-Ecological Zones 196 
(GAEZ) or the Agricultural Model Intercomparison and Improvement Project (AgMIP) frameworks. Agreement between yield 197 
potential data sources was evaluated by calculating the absolute mean error (ME) and the root mean square error (RMSE), in t ha-1. 198 
 199 

Crop Water 
regime 

Country or sub-
continental region 

̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶  ̶̶̶ ̶ ̶̶ ̶ ̶ ̶ ̶̶ ̶̶ ̶ ̶̶ ̶̶ Location ̶̶ ̶ ̶̶ ̶ ̶ ̶̶  ̶̶̶ ̶ ̶̶ ̶ ̶̶  ̶̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶ ̶  ̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶  ̶̶̶ ̶ ̶̶ ̶ ̶̶  ̶̶ Climate zone  ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶ ̶  ̶ Country or sub-continental  ̶ 
  GYGA-GAEZ GYGA-AgMIP   GYGA-GAEZ GYGA-AgMIP GYGA-GAEZ GYGA-AgMIP 

      n ϯ ME RMSE ME RMSE n ME RMSE ME RMSE ME RMSE ME RMSE 
Maize Irrigated Asia ˠ 47 0.7 3.3 6.0 6.3 32 1.3 3.7 5.6 5.8 -0.4 0.4 5.9 5.9 
    Eastern Europe 6 -2.0 3.5 2.7 3.6 6 -2.1 3.5 2.8 3.6 -2.6 2.6 2.5 2.5 
    MENA ϯ 22 0.1 2.4 12.2 12.5 13 0.1 2.1 11.2 11.6 -0.5 0.5 11.1 11.1 
    USA 21 -1.9 2.7 3.5 3.8 13 -2.0 2.8 3.5 3.7 -1.8 1.8 3.9 3.9 
    Western Europe 64 -0.1 3.1 3.0 3.3 51 -0.2 3.1 2.9 3.2 0.1 0.1 3.2 3.2 
  Rainfed Asia  69 1.2 4.1 5.4 6.0 31 0.9 3.7 5.7 6.0 1.1 1.1 5.4 5.4 
    Eastern Europe 101 0.6 3.5 3.8 4.4 73 0.6 3.5 3.8 4.4 -0.7 0.7 3.1 3.1 
    USA 45 0.8 2.4 4.4 4.7 18 1.2 2.5 4.4 4.5 1.4 1.4 5.1 5.1 
    South America 43 -0.7 4.9 1.9 2.7 22 -2.2 4.7 1.7 2.2 0.5 0.5 3.0 3.0 
    SSA 105 -2.5 5.3 0.6 3.4 62 -2.1 5.0 0.8 3.4 -2.4 2.4 1.3 1.3 
    Western Europe 40 3.9 5.5 4.6 5.1 28 4.3 5.4 5.1 5.6 2.5 2.5 3.5 3.5 
Wheat Irrigated Asia  7 1.2 1.2 1.3 1.4 4 1.1 1.1 1.2 1.2 0.9 0.9 1.0 1.0 
    MENA 41 -1.7 2.2 1.8 2.7 23 -1.6 2.1 1.7 2.5 -1.4 1.4 2.4 2.4 
    USA and Mexico 11 2.6 2.9 2.8 3.0 8 2.5 2.7 2.4 2.6 2.3 2.3 3.2 3.2 
  Rainfed Australia 22 0.8 1.4 2.4 2.5 6 0.6 0.8 2.4 2.5 -0.1 0.1 2.0 2.0 
    Eastern Europe 137 -2.3 2.7 2.9 3.3 101 -2.3 2.7 2.8 3.1 -2.0 2.0 3.2 3.2 
    MENA 51 -2.4 3.3 0.2 1.6 29 -2.2 3.1 0.3 1.5 -3.3 3.3 -0.1 0.1 
    South America 20 -1.6 2.0 1.5 1.8 11 -1.7 2.1 1.4 1.8 -1.0 1.0 1.8 1.8 
    SSA 23 -0.6 1.9 0.6 1.5 18 -0.2 2.1 1.1 2.4 -0.7 0.7 0.8 0.8 
    Western Europe 136 -0.8 2.4 2.9 3.3 92 -0.8 2.3 3.0 3.4 -0.8 0.8 3.0 3.0 
Rice Irrigated Asia 88 -0.8 1.7 4.6 4.8 36 -0.4 1.7 4.7 5.0 -0.5 0.5 5.0 5.0 
    MENA 21 -4.4 4.6 2.8 3.1 15 -4.1 4.2 3.1 3.3 -3.1 3.1 3.7 3.7 
    USA 14 -0.7 1.0 6.3 6.4 9 -0.7 1.0 6.2 6.3 -0.7 0.7 6.4 6.4 
    South America 20 2.7 2.9 8.7 8.7 10 2.6 2.8 8.6 8.6 3.0 3.0 9.0 9.0 
    SSA 50 -0.2 2.9 3.7 4.0 32 -1.1 2.5 3.3 3.6 -1.2 1.2 2.8 2.8 
  Rainfed Asia 31 3.2 3.5 2.7 3.0 16 3.3 3.8 2.6 2.8 3.0 3.0 2.6 2.6 
    South America 8 3.6 3.6 3.6 3.7 6 3.6 3.7 3.4 3.5 4.7 4.7 3.6 3.6 
    SSA 40 1.7 2.9 1.0 2.9 32 2.2 3.0 1.6 2.9 1.8 1.8 1.5 1.5 

ϯ Total number of locations or climate zones for which yield potential is compared between bottom-up and top-down approaches.  200 
ˠ Asia region excluding Middle East. Ϯ Middle East and North Africa. 201 
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Supplementary Table S3. Actual yield and yield potential estimations. Actual yield and yield potential estimations derived from 202 
the Global Yield Gap Atlas (GYGA) and the Global Agro-Ecological Zones (GAEZ) or the Agricultural Model Intercomparison and 203 
Improvement Project (AgMIP) frameworks at three different spatial scale. Yield levels are expressed in t per harvested ha. 204 
 205 

Crop 
 

Water 
regime 
 

Country or sub-
continental region 
 

̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶  ̶̶̶ ̶ ̶̶ ̶ ̶ ̶ ̶̶ ̶̶ ̶ ̶̶ ̶̶  Location  ̶̶ ̶ ̶̶ ̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶  ̶̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶ ̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶ ̶̶ ̶̶ ̶ ̶̶ ̶  ̶Climate zone  ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶̶ ̶ ̶ ̶ ̶  Country or sub-continental  ̶ 

n ϯ Actual 
yield 

Yield potential n Actual 
yield 

Yield potential Actual 
yield 

Yield potential 
GYGA GAEZ AgMIP GYGA GAEZ AgMIP GYGA GAEZ AgMIP 

Maize Irrigated Asia ˠ 47 7.3 13.6 12.9 7.6 32 7.1 13.4 12.2 7.8 6.0 12.5 15.1 10.0 
    Eastern Europe 6 6.0 12.7 14.7 10.0 6 6.0 12.7 14.8 9.9 6.6 16.5 17.1 5.4 
    MENA ϯ 22 6.7 17.5 17.4 5.3 13 6.9 17.5 17.4 6.3 11.8 14.0 15.9 10.1 
    USA 21 11.5 13.6 15.5 10.1 13 11.5 13.6 15.6 10.1 8.1 13.9 14.3 7.9 
    Western Europe 64 9.8 14.7 14.8 11.7 51 9.6 14.7 14.9 11.9 10.6 14.3 14.2 11.2 
  Rainfed Asia  69 5.9 10.8 9.6 5.4 31 6.1 10.9 10.0 5.2 4.9 8.8 9.5 5.7 
    Eastern Europe 101 5.3 9.4 8.8 5.6 73 5.3 9.4 8.9 5.6 9.7 12.4 11.0 7.4 
    USA 45 8.5 11.2 10.3 6.7 18 7.6 9.9 8.8 5.5 6.9 10.9 9.8 5.5 
    South America 43 5.9 10.8 11.5 8.9 22 5.6 10.0 12.2 8.3 6.1 10.9 10.4 7.9 
    SSA 105 1.8 9.1 11.6 8.5 62 1.8 9.2 11.3 8.4 1.7 9.1 11.5 7.8 
    Western Europe 40 9.3 11.1 7.2 6.5 28 9.5 11.5 7.2 6.4 8.9 10.2 7.7 6.7 
Wheat Irrigated Asia  7 2.1 4.9 3.8 3.6 4 2.1 5.0 3.9 3.8 3.3 8.6 10.0 6.2 
    MENA 41 3.2 8.3 10.0 6.5 23 3.2 8.1 9.7 6.4 5.9 9.3 7.0 6.2 
    USA and Mexico 11 5.7 9.1 6.5 6.3 8 5.6 9.2 6.7 6.8 2.2 4.9 4.0 4.0 
  Rainfed Australia 22 1.7 3.6 2.8 1.3 6 1.8 3.9 3.3 1.5 1.7 3.6 3.7 1.7 
    Eastern Europe 137 3.8 8.6 11.0 5.7 101 3.8 8.6 10.9 5.8 3.6 8.5 10.4 5.2 
    MENA 51 1.1 2.9 5.3 2.7 29 1.1 3.2 5.3 2.9 1.0 2.6 5.8 2.7 
    South America 20 2.9 5.3 6.9 3.8 11 2.7 5.1 6.8 3.6 3.0 5.3 6.3 3.5 
    SSA 23 1.9 6.7 7.3 6.1 18 2.1 6.8 7.1 5.7 2.2 7.9 8.6 7.1 
    Western Europe 136 5.4 8.3 9.2 5.4 92 5.3 8.3 9.2 5.3 6.3 9.0 9.8 6.1 
Rice Irrigated Asia 88 6.2 9.7 10.4 5.1 36 6.2 10.0 10.5 5.3 6.8 9.4 12.5 5.8 
    MENA 21 4.6 7.7 12.1 4.8 15 4.7 7.9 12.0 4.8 8.1 12.4 13.1 6.0 
    USA 14 8.3 12.5 13.2 6.2 9 8.3 12.3 13.0 6.1 6.3 9.8 10.3 4.8 
    South America 20 7.9 14.5 11.8 5.9 10 7.9 14.5 11.9 5.9 7.6 14.7 11.7 5.8 
    SSA 50 3.7 9.6 9.8 6.0 32 3.4 9.3 10.4 6.0 3.2 9.7 10.9 7.0 
  Rainfed Asia 31 4.4 8.5 5.4 5.8 16 4.3 8.3 5.0 5.7 4.0 8.1 5.0 5.4 
    South America 8 2.5 8.9 5.4 5.3 6 2.4 9.0 5.4 5.6 2.6 9.0 4.3 5.4 
    SSA 40 1.7 6.4 4.7 5.4 32 1.7 6.7 4.5 5.0 1.8 6.1 4.3 4.6 

ϯ Total number of locations or climate zones for which yield potential is compared between bottom-up and top-down approaches.  206 
ˠ Asia region excluding Middle East. Ϯ Middle East and North Africa. 207 
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Supplementary Table S4. Ensemble global gridded model. Models from the Global Gridded 208 
Crop Model Intercomparison (GGCMI) project of AgMIP that were combined to obtain 209 
ensemble maps for different combinations of water regime (irrigated and rainfed) and crops 210 
(maize, rice, and wheat).  211 
 212 

 213 
●: Simulations combined to obtain ensemble maps. x: Simulations for AgMERRA not available; 214 
xx: Simulations based on a harmonized growing season and absence of nutrient limitation (so-215 
called “harm-suffN” scenario) not available. 216 
 217 
  218 

Models Maize Rice Wheat Key reference(s) 
WOFOST ● ● ● Boogaard, et al. 37,van Diepen, et al. 38 
CLM ● ● ● Drewniak, et al. 45 
EPIC-BOKU ● ● ● Izaurralde, et al. 46,Kiniry, et al. 47,Williams, et al. 48 
EPIC-IIASA ● ● ● Izaurralde, et al. 46,Kiniry, et al. 47,Williams, et al. 48 
EPIC-TAMU ● x ● Kiniry, et al. 47,Izaurralde, et al. 49 
GEPIC ● ● x Izaurralde, et al. 46,Williams, et al. 48,Liu, et al. 50 
LPJ-GUESS ● ● ● Smith, et al. 51 
LPJmL ● ● ● Bondeau, et al. 52,Schaphoff, et al. 53,von Bloh, et al. 54 
ORCHIDEE ● ● ● Wu, et al. 55 
pAPSIM ● x x Keating, et al. 42,McCown, et al. 56,Elliott, et al. 57 
pDSSAT ● ● ● Ritchie and Otter 39,Elliott, et al. 57 
PEGASUS ● x x Deryng, et al. 58,Deryng, et al. 59 
PEPIC ● ● ● Liu, et al. 60 
PRYSBI2 xx xx xx Sakurai, et al. 61,Okada, et al. 62 
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