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Simple Summary: Increases in cereal grain yields cause the accumulation of large amounts of straw
on the soils after grain harvest. Straw is usually burned in the field to help soil preparation for the
next crop, a practice resulting in local and global pollution, erosion, loss of soil carbon, and wildfires.
An alternative is feeding straw to ruminants, but straw has poor nutritive value, making this option
unattractive to Chilean farmers. Oats and wheat have been bred for greater grain yield and improved
agronomic traits, but it is unknown whether the straw of different varieties and breeding lines differs
in nutritive quality. To investigate this possibility, we incubated the straws from 49 different varieties
and breeding lines of oats and 24 of wheat with rumen microorganisms, and studied gas production
as an indication of the extent of straw digestion. We found moderate differences among varieties
and breeding lines of oats and wheat in gas production, which were not detrimental to agronomic
characteristics of importance. If these results can be confirmed in animal experiments, gas production
of straw incubated in rumen microbial cultures may be used to identify cereal genotypes whose straw
has a better nutritive quality for ruminants.

Abstract: Increases in cereals grain yield in the last decades have increased the accumulation of straw
on the soil after harvest. Farmers typically open burn the straw to prepare the soil for the next crop,
resulting in pollution, emission of greenhouse gases, erosion, loss of soil organic matter, and wildfires.
An alternative is feeding straw to ruminants, but straw nutritive value is limited by its high content
of lignocellulose and low content of protein. Cereal breeding programs have focused on improving
grain yield and quality and agronomic traits, but little attention has been paid to straw nutritive
value. We screened straw from 49 genotypes of oats and 24 genotypes of wheat from three cereal
breeding trials conducted in Chile for in vitro gas production kinetics. We found moderate effects of
the genotype on gas production at 8, 24, and 40 h of incubation, and on the maximum extent and rate
of gas production. Gas production was negatively associated with lignin and cellulose contents and
not negatively associated with grain yield and resistance to diseases and lodging. Effects observed
in vitro need to be confirmed in animal experiments before gas production kinetics can be adopted to
identify cereal genotypes with more digestible straw.
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1. Introduction

Cereal yields have nearly duplicated in Chile between the 1980/1989 and 2000/2009
decades [1], resulting in sustained increases in the production of crop residues [2]. The av-
erage accumulation of straw on the soil in Chile after cereal harvest has been estimated
as 6.4, 7.6, 6.9, 14.2, and 7.7 ton/ha for wheat, oats, barley, corn, and rice, respectively,
of which only between 2.5 and 3 ton/ha are estimated to decompose every year [3].

Producers frequently burn the straw on the field to help soil preparation for the next
crop [4]. Open burning of straw is legally regulated in Chile by Ordinance 276/1980 of
the Ministry of Agriculture [5], and it is the most widely used practice to manage straw
residues. However, this practice is highly undesirable because it oxidizes soil organic
matter (OM), produces greenhouse gases, favors soil erosion and compaction, pollutes the
air, and causes wildfires [6–9].

An alternative to burning straw is to feed it to ruminants. Feeding crop residues to
livestock is resource-efficient as it allows integrating ruminant and crop production by
recycling nutrients to the soil as animal manure and supplying traction for soil preparation
and sowing [10]. Mixed crop–livestock systems also contribute to spreading financial risks
and increasing food security of smallholders by using a very low-cost feed [11]. However,
even though ruminants have the ability to digest fiber, cereal straws have a low nutritive
value because their high content of lignocellulose and low nitrogen content pose con-
straints on digestibility and voluntary intake [2,12]. In Chile, Instituto de Investigaciones
Agropecuarias INIA started breeding wheat and oats in the 1960s with a focus on grain
yield, industrial quality, and disease and lodging resistance. However, how cereal breeding
efforts might affect the composition and nutritional quality of straw for ruminants has
not been investigated in Chile, despite the growing importance of problems caused by
accumulation and open burning of straw. Previous research has reported variation in nutri-
tional quality of residues among cultivars of wheat, barley, oats, and sorghum [2,13–15].
It would be important to identify those cereal varieties and breeding lines with a straw with
superior nutritive value for ruminants. Equally important, cereal genotypes possessing
a nutritionally superior straw should also maintain desirable agronomic characteristics,
such as high grain yield and resistance to diseases and lodging.

Rumen digestion of large numbers of plant materials can be preliminarily screened
through the use of in vitro gas production techniques [16,17]. We hypothesized the ex-
istence of differences in gas production in vitro of straw from different wheat and oats
genotypes. We also hypothesized that the nutritive value of straw as assessed through
in vitro gas production would not associate unfavorably with grain yield and incidence
and severity of lodging and diseases. The objectives of this research were (1) to evaluate
the variation in gas production kinetics of straw from different genotypes of wheat and
oats grown and bred in Chile, and (2) to investigate the relationship between in vitro gas
production and agronomic traits.

2. Materials and Methods
2.1. Cereal Breeding Trials

Three breeding trials for evaluating advanced breeding lines and commercial varieties
of oats and wheat were sown by the cereal breeding programs of Instituto de Investiga-
ciones Agropecuarias INIA at Centro Regional Carillanca, Vilcún, La Araucanía, Chile
(38.69◦ S, 72.41◦ W; 200 m above sea level). The Oats 1 trial, sown in June 2018, included
5 commercial varieties and 20 advanced breeding lines. The Oats 2 trial, sown in July 2018,
included 2 commercial varieties currently in the market (registered in 2007 and 2015), 22 his-
torical varieties (registered between 1968 and 2004), and a landrace genotype. The Wheat
trial, sown in June 2018, included 4 commercial varieties and 21 advanced breeding lines.

All three genotype evaluation trials were sown as random block designs, with four
blocks per genotype. Within each trial and block, oats or wheat genotypes were randomly
assigned to 2 × 1 m experimental plots and hand-planted at 120 kg/ha of seed and 0.2 m
of separation between rows. Crops were fertilized with 180 kg/ha N (20% at sowing,
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40% at the beginning of tillering, and 40% at full tillering), 80 kg P2O5 (100% at sow-
ing) and 70 kg/ha K (100% at sowing). Weeds were controlled using a post-emergence
herbicide mixture of 10 g/ha metsulfuron methyl (2-[4-methoxy-6-methyl-1,3,5-triazin-2-
ylcarbamoylsulfamoyl]benzoic acid; Anasac Chile S.A., Santiago, Chile), 0.5 L/ha MCPA-
dimethylammonium (A.H. Marks and Company Ltd, West Yorkshire, UK) and 170 g/ha
dicamba-sodium (Syngenta Crop Protection AG, Basel, Switzerland), diluted in 200 L/ha
water. Crops were grown without application of fungicides, insecticides, or growth reg-
ulators and were harvested with a combine harvester machine. At harvest, grain yield
was recorded for each experimental plot from a clean sample of grain and adjusted to 12%
moisture content.

In both oats breeding trials, plant height at harvest was recorded as the sum of stem
and panicle. Plant lodging was recorded in both oats trials right before harvest both in
terms of incidence (visual percentage of the experimental plot area) and severity (on a 1
to 5 subjective scale with 1 being the absence of tilting and 5 being complete inclination).
In both oats trials, the incidence of Halo blight (Pseudomona syringae pv. coronafaciens) was
estimated as the visual percentage of damaged leaves, and the incidence of Barley yellow
dwarf as a percentage of affected plants in the plot was estimated visually. In the Oats
1 trial, the incidence of crown rust (Puccinia coronata var. avenae f. sp. avenae) was evaluated
with the modified binomial system of Cobbs [18]. All disease scores were recorded three
times during the oat crop cycle: when the first node of the stem became visible, at the end
of flowering, and during dough grain. In each experimental plot, the maximum disease
score was considered for the analyses of correlation with gas production parameters (see
Section 2.5).

2.2. Straw Collection, Morphological Measurements and Proximate Analyses

Straw residues were collected from 1 m of the central row of each experimental plot
in both oats trials and the wheat trial (N = 100 per crop breeding trial corresponding to
25 genotypes and 4 blocks) no later than one week after grain was harvested. All of the
straw samples from each of the breeding trials were collected within one day. Residues
were cut at the ground level and the resulting straw was then cut from the top to 40 cm
long. This resulted in samples of approximately 200 g straw. The collected samples did not
contain chaff.

From each sample of straw, 10 representative tillers were subsampled, individually
weighed, and used for morphological determinations. The leaves (sheaths and blades
together) were separated from the stem of each tiller. The leaves and stems were then
weighed separately, and the mass percentage of leaves (%Leaves) calculated as g⁄100 g
sample. The diameters of the first and second internodes of each tiller were measured
using a micrometer. The ratio of the first to the second internode diameter (RΦ) and the
average diameter of the first and second internodes (avΦ) were calculated and expressed in
mm⁄mm and mm, respectively. The average diameter was used to estimate the area section
assuming a circular shape, and the straw volume estimated by multiplying the so obtained
area section by the straw length assuming a cylindrical shape of the stem. Finally, the mass
of each stem was divided by its estimated volume to obtain the stem apparent density (δ),
expressed in g⁄cm3.

Each subsample of the 10 tillers used for morphological determinations was then
returned to its original sample. From each sample, approximately 40 g were again sub-
sampled, and the four 40 g subsamples from each of the four blocks corresponding to each
genotype were combined into a pooled sample per genotype (N = 25 per crop breeding
trial). The resulting pooled samples were shipped to Laboratorio de Nutrición y Medio
Ambiente, Instituto de Investigaciones Agropecuarias, Centro Regional Remehue, Osorno,
Chile, for their proximate compositional and in vitro digestibility analyses. Pooled samples
were ground through a 1 mm screen and analyzed for dry matter (DM, method 934.01),
total ash (method 942.05), crude protein (CP), method 984.13) [19], and fiber fractions
neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL)
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excluding residual ash [20], as well as apparent in vitro DM digestibility (IVDMD) [21].
Hemicellulose and cellulose contents were estimated by subtracting ADF from NDF and
ADL from ADF, respectively [20,22].

2.3. In Vitro Incubations

The ground, combined samples from each wheat and oats genotype used for the
analyses of proximal composition were incubated in in vitro mixed rumen cultures at
Instituto de Investigaciones Agropecuarias INIA at Centro Regional Carillanca, Vilcún,
La Araucanía, Chile. Genotypes were incubated in separate experiments for each breeding
trial Oats 1, Oats 2 and Wheat. One genotype of each of the Oats 1 and the Wheat trials
were not incubated because they were temporarily lost after their proximate analyses and
hence their shipping to the incubation laboratory was delayed.

Rumen contents were sampled before the morning feeding from two ruminally can-
nulated, non-lactating, non-pregnant, Holstein cows ad libitum fed wheat straw (90.2%
DM, and on a DM basis 6.30% ash, 2.00% CP, 79.5% NDF, 54.0% ADF, and 4.51% ADL)
and a mineral block (Veterblock, Veterquímica S.A., Santiago, Chile). Rumen contents
were strained through a double synthetic cloth, and the resulting fluid and solid fractions
immediately transported to the laboratory in separate insulated containers.

All rumen inoculum preparation procedures in the laboratory were conducted un-
der O2-free CO2. Two hundred milliliters of pooled rumen fluid from both cows were
combined with 100 mL of solids from both animals, and blended at low speed for 1 min
discontinuously (3 s blending followed by 2 s interruptions) to detach microbial cells
adhered to solid particles. The beaten rumen contents were strained through two synthetic
layers and the procedure was repeated until obtaining 600 mL of rumen fluid enriched
with detached microbial cells. The resulting 600 mL of rumen fluid were combined with
the medium of Mould et al. [23] in a 1:4 ratio (V/V) [24]. Of the resulting inoculum, 40 mL
were delivered into 100 mL serum bottles containing 501± 1.37 (mean± SD) mg of ground
straw substrate of a particular genotype. Rumen inoculum was constantly agitated with a
rotating magnet while being delivered into the serum bottles. Bottles were crimp sealed
with butyl rubber stoppers under O2-free CO2, and incubated in a shaking water bath at
39 ◦C and 60 rpm for 72 h.

Gas pressure accumulating in each bottle was measured at 5 min and 2, 3, 6, 9, 12,
18, 24, 36, 48, and 72 h from the beginning of the incubation using a pressure transducer
(Sper Scientific 840065, Scottsdale, AZ, USA), without allowing for gas release [24] and
without removing the bottles from the water bath at 39 ◦C. The exact time at which each
measurement was conducted was recorded for each bottle and time point. After the
last measurement of gas pressure at 72 h of incubation, bottles were opened and pH
immediately measured (Oakton® pH 700 m, Vernon Hills, IL, USA).

Each genotype was incubated in duplicate. Each of the duplicate bottles of each
genotype was randomly allocated to one of two groups blocked by order of inoculation.
For each crop breeding trial, four incubations were conducted in different weeks, totaling
200 bottles in the Oats 2 breeding trial (25 genotypes × 2 incubation duplicates × 4 incuba-
tions) and 192 bottles in the Oats 1 and Wheat breeding trials (24 genotypes × 2 incubation
duplicates × 4 incubations).

2.4. Calculations

For each serum bottle, accumulated gas pressure was modelled as an inverted expo-
nential function as a function of time elapsed from the beginning to the incubation in that
bottle [17], using the exact time points at which gas pressure was measured in each bottle:

P = a + b (1 − exp−ct) (1)

where P is accumulated gas pressure expressed in atm at time t in h, a is the intercept, and b
is the theoretical maximum increment in gas pressure, both in atm, and c is the fractional



Animals 2021, 11, 1552 5 of 15

rate of increase in gas pressure in h−1 [17]. The theoretical maximum accumulated gas
pressure was calculated as the sum of a and b:

lim
t →+∞

P= lim
t →+∞

(a + b (1− exp(−ct))) = a + b (2)

The parameterized gas pressure equations for each incubated bottle were also used to
estimate predicted accumulated gas pressure at 8, 24, and 40 h of incubation. Gas produc-
tion in mmol at 8 (P8), 24 (P24) and 40 (P40) h and the theoretical maximum gas production
(Pmax) were calculated from gas accumulated at 8, 24, and 40 h, and from the theoretical
maximum accumulated gas pressure, respectively, using the ideal gas law considering a
0.060 L gas headspace and a temperature of 312 K. Gas pressure parameters a and b were
also used to calculate gas production intercept a and maximum increment b using the ideal
gas law.

2.5. Statistical Analyses

All response variables were separately analyzed per breeding trial. The genotype was
modelled as a random variable in order to extrapolate the results from the populations of
genotypes examined to conceptually larger populations of genotypes beyond the genotypes
evaluated in each trial.

For each breeding trial, the random effect of the genotype on morphological response
variables avΦ, RΦ, %leaves, and δ was separately modelled for trials Oats 1, Oats 2,
and Wheat as:

response = overall mean + block + genotype(random) + error (3)

where block corresponds to the fixed effect of the location of each experimental plot within
each of the breeding trials Oats 1, Oats 2 and Wheat, from which each straw sample
was collected.

The random effect of the genotype on the rumen incubation parameters a, b, c, P8, P24,
P40 and Pmax, and final pH, was separately modelled for trials Oats 1, Oats 2, and Wheat as:

response = overall mean + inoculation + genotype(random) + incubation(random) + error (4)

where the fixed effect of inoculation refers to the order in which each duplicate belonging to
each genotype was inoculated (first or second batch), and incubation refers to the random
effect of the four incubation runs conducted on separate weeks.

All two-way associations between incubation parameters a, b, c, P8, P24, P40, Pmax,
and final pH were examined through Pearson correlations using the results of all incubation
bottles. The associations between P8, P24, P40, Pmax and c with proximate composition
(DM and OM, CP, cellulose, hemicellulose, ADL percentage in the DM) and morpholog-
ical variables (avΦ, RΦ, % leaves, and δ) per genotype were studied, building multiple
regression models with the backwards stepwise regression procedure removing from the
models regressors with p > 0.05, until obtaining the final model for each response variable
(N = 73; 25 genotypes of the Oats 2 breeding trial and 24 genotypes of each of the Oats 1
and Wheat breeding trials). Single regressions between IVDMD and P8, P24, P40, Pmax and
c were also conducted.

The relationships between the gas production parameters P8, P24, P40, Pmax and c
with agronomic variables were studied separately for each breeding trial (N = 24 for
the Oats 1 and Wheat breeding trials and N = 25 for the Oats 2 breeding trial) through
Pearson correlations. The agronomic variables examined were grain yield (Oats 1, Oats 2,
and Wheat breeding trials), lodging percentage and severity, and incidence of Halo blight
and Barley yellow dwarf (Oats 1 and Oats 2 breeding trials) and crown rust (Oats 1 trial).
In the Oats 2 historical variety trial, P8, P24, P40, Pmax and c were regressed against the year
of registration of the varieties.
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Outliers were identified as observations with studentized residuals > |tN−1,0.95|,
with N being the number of observations. Influential observations were identified as those
with a Cook’s distance > F0.5(p,N−p), with p being the number of parameters in the regression
equation [25].

All statistical analyses were conducted with JMP® 13.2.1 [26].

3. Results
3.1. Chemical Composition

Means, standard deviation, and ranges per trial for the contents of DM, OM, CP, NDF,
ADF, ADL, and IVDMD of the straw residues by trial are provided in Table 1. Contents of
DM and OM varied little among cereal genotypes, while there was more variation in CP,
ADL, and IVDMD, with NDF, ADF, hemicellulose, and cellulose being intermediate.

3.2. Straw Morphology

Genotype affected the straw residue avΦ (p≤ 0.002), Leaves% (p≤ 0.004), and δ (p ≤ 0.004),
and affected (p ≤ 0.049) or tended (p = 0.060) to affect RΦ (Supplementary Table S1).

3.3. In Vitro Incubations

Incubation bottles with noticeable gas leaks or those ones whose gas pressure curve
against time that did not adjust to an inverted exponential function were discarded, af-
ter which 169 bottles remained for analysis in the Oats 1 and Wheat trials and 183 in the
Oats 2 trial.

Table 1. Descriptive statistics of proximate composition of straw residues of 50 oats and 25 wheat
genotypes from three breeding trials (Oats 1, advanced breeding lines and commercial varieties; Oats 2,
commercial and historical varieties; Wheat, advanced breeding lines and commercial varieties).

Breeding Trial Fraction Mean SD 1 Min Max

Oats 1

DM 2 (%) 90.6 0.89 89.9 94.7

OM (%DM) 93.4 0.80 92.2 95.6

CP (%DM) 2.28 0.30 1.81 3.00

NDF (%DM) 79.1 1.69 75.3 81.8

ADF (%DM) 53.3 2.07 49.6 58.3

ADL (%DM) 5.63 0.91 4.34 7.94

Hemicellulose (%DM) 3 25.8 1.67 22.0 28.8

Cellulose (%DM) 4 47.7 1.56 45.1 50.3

IVDMD 50.4 5.43 32.9 58.6

Oats 2

DM (%) 90.6 0.34 90.2 91.4

OM (%DM) 93.6 0.61 92.7 95.1

CP (%DM) 2.21 0.27 1.69 2.88

NDF (%DM) 80.5 2.24 78.1 89.7

ADF (%DM) 55.6 1.69 52.0 59.8

ADL (%DM) 6.49 0.77 4.87 8.25

Hemicellulose (%DM) 25.0 2.51 22.5 35.6

Cellulose (%DM) 49.1 1.27 46.8 51.7

IVDMD 44.6 4.88 35.8 52.3
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Table 1. Cont.

Breeding Trial Fraction Mean SD 1 Min Max

Wheat

DM (%) 90.3 0.29 89.8 91.0

OM (%DM) 91.5 0.94 89.7 93.1

CP (%DM) 2.86 0.42 1.88 3.81

NDF (%DM) 77.2 1.62 74.1 80.3

ADF (%DM) 52.0 1.60 49.5 55.6

ADL (%DM) 5.76 0.71 4.37 7.22

Hemicellulose (%DM) 25.2 1.43 22.5 27.5

Cellulose (%DM) 46.2 1.20 43.2 48.4

IVDMD 48.7 3.01 41.2 53.2
1 SD: standard deviation; Min: minimum; Max: maximum. 2 DM: dry matter; OM: organic matter; CP: crude
protein; NDF: neutral detergent fiber; ADF: acid detergent fiber; ADL: acid detergent lignin; IVDMD: in vitro dry
matter digestibility. 3 Calculated as NDF−ADF [20,22]. 4 Calculated as ADF−ADL [20,22].

Plant genotype did not affect gas production intercept a in the Oats 1 (p = 0.16; Table 2)
and Oats 2 trials (p = 0.53), but influenced it in the Wheat trial (p = 0.025). Gas production
maximum increment b was affected by plant genotype in all three breeding trials (p ≤ 0.020).
The rate of gas production c was affected by plant genotype in the Oats 2 and Wheat trials
(p ≤ 0.021), and tended (p = 0.056) to be affected by plant genotype in the Oats 1 trial. Gas
production at 8 h in the Oats 2 trial was affected by plant genotype (p = 0.024), and tended
(p ≤ 0.084) to be affected by plant genotype in the Oats 1 and Wheat trials. In all three
breeding trials, plant genotype affected P24 (p ≤ 0.018; Figure 1), P40 (p ≤ 0.020), Pmax
(p ≤ 0.034), and final pH (p ≤ 0.007).

Gas parameter a was negatively associated with b and c (p < 0.001) and positively
associated with P8, P24, P40, Pmax, and pH (p < 0.001; Table 3). Gas production parameter b
was negatively associated with c and pH (p < 0.001) and positively associated with P8, P24,
P40, and Pmax (p < 0.001). Gas production parameter c was positively associated with gas
production at time points P8 and P24 (p < 0.001) and negatively correlated with P40 (p < 0.05)
and Pmax (p < 0.001). Gas production at different time points was positively correlated with
each other (p < 0.001). Final pH was negatively correlated with gas production parameter
b and with P24, P40, and Pmax (p < 0.001), and positively with gas production parameter a
(p < 0.001).

3.4. Associations of Gas Production Parameters and pH with Chemical Composition and
Straw Morphology

Gas production at 8, 24, and 40 h of incubation was negatively related to ADL and
cellulose (p ≤ 0.006; Table 4). The theoretical maximum gas production was negatively
related to ADL only (p < 0.001). Gas pressure at 8 h of incubation was positively associated
with avΦ (p < 0.001), whereas the fractional rate of gas production c was negatively associ-
ated with RΦ (p = 0.002). In vitro apparent digestibility of DM was positively related to
P8, P24, P40 and Pmax (R2 ≥ 0.39; p < 0.001) and negatively related to c (R2 = 0.10; p = 0.006;
Supplementary Table S2).

3.5. Association between In Vitro Gas Production and Agronomic Traits

Gas pressure at 8 h of incubation was unrelated to grain yield in the Oats 1 and Oats 2
(p ≥ 0.16) breeding trials, and tended (p = 0.076) to be associated positively with grain yield
in the Wheat trial (Supplementary Table S3). In all three trials, P24, P40, Pmax and c were
unrelated to grain yield (p ≥ 0.12). Lodging incidence and severity were negatively related
to P8 (p ≤ 0.024) in the Oats 1 breeding trial. Lodging incidence tended to be negatively
related to P24 and P40 (p≤ 0.070) and lodging severity to c (p≤ 0.096) in the Oats 2 breeding
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trial. Lodging incidence and severity were otherwise unrelated to gas production in both
trials (p ≥ 0.12).

There were no relationships between P8, P24, P40, Pmax and c with the incidence of
Halo blight or Barley yellow dwarf virus (p ≥ 0.29; Supplementary Table S3) in the Oats 1 and
Oats 2 breeding trials, and with the incidence of crown rust in the Oats 1 trial (p ≥ 0.20).

There was no relationship between the year of registration of oats varieties in the Oats
2 breeding trial and P8, P24, P40, Pmax and c (p ≥ 0.17) (results not shown).
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Supplementary Table S2). 

Figure 1. Gas production at 24 h of incubation (P24) of straw from different oats and wheat genotypes from three breeding
trials (Oats 1, advanced breeding lines and commercial varieties; Oats 2, commercial and historical varieties; Wheat,
advanced breeding lines and commercial varieties) in in vitro rumen cultures. Each error bar is constructed using one
standard error of the mean.
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Table 2. Effect of the genotype of oats and wheat from three breeding trials (Oats 1, advanced breeding lines and commercial
varieties; Oats 2, commercial and historical varieties; Wheat, advanced breeding lines and commercial varieties) on gas
production parameters and final pH of straw incubated in in vitro rumen cultures.

Breeding Trial Response Overall
Mean SEM 1 Min Max Genotype

p =

Oats 1

a (mmol/g DM incubated) 2 0.789 0.128 0.729 0.848 0.16

b (mmol/g DM incubated) 3.53 0.129 3.20 3.99 0.008

c (h−1) 0.048 0.004 0.043 0.053 0.056

P8 (mmol/g DM incubated) 1.90 0.0995 1.84 2.02 0.084

P24 (mmol/g DM incubated) 3.16 0.130 2.96 3.41 0.015

P40 (mmol/g DM incubated) 3.75 0.146 3.50 4.10 0.011

Pmax (mmol/g DM incubated) 4.32 0.183 4.05 4.73 0.017

Final pH 6.26 0.026 6.20 6.35 0.007

Oats 2

a (mmol/g DM incubated) 0.506 0.0378 0.497 0.527 0.53

b (mmol/g DM incubated) 3.51 0.103 2.92 3.86 0.004

c (h−1) 0.055 0.002 0.047 0.058 0.021

P8 (mmol/g DM incubated) 1.74 0.0478 1.65 1.86 0.024

P24 (mmol/g DM incubated) 3.05 0.0725 2.80 3.32 0.008

P40 (mmol/g DM incubated) 3.60 0.0788 3.23 3.93 0.006

Pmax (mmol/g DM incubated) 4.02 0.0847 3.52 4.37 0.005

Final pH 6.21 0.025 6.14 6.32 0.002

Wheat

a (mmol/g DM incubated) 0.572 0.0346 0.504 0.657 0.025

b (mmol/g DM incubated) 3.90 0.112 3.38 4.14 0.020

c (h−1) 0.047 0.003 0.042 0.067 0.015

P8 (mmol/g DM incubated) 1.78 0.0615 1.67 1.85 0.066

P24 (mmol/g DM incubated) 3.17 0.0988 2.95 3.31 0.018

P40 (mmol/g DM incubated) 3.83 0.106 3.59 4.01 0.020

Pmax (mmol/g DM incubated) 4.47 0.116 4.03 4.70 0.034

Final pH 6.07 0.037 6.02 6.13 0.004
1 SEM: standard error of the mean; Min: minimum; Max: maximum. 2 a: gas production intercept; b: gas production maximum increment;
c: fractional rate of gas production; P8: gas production at 8 h of incubation; P24: gas production at 24 h of incubation; P40: gas production at
40 h of incubation; Pmax: theoretically maximum gas production.
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Table 3. Pearson correlation coefficients r between gas production parameters and final pH of rumen in vitro incubations of straw from oats and wheat genotypes from three breeding
trials (Oats 1, advanced breeding lines and commercial varieties; Oats 2, commercial and historical varieties; Wheat, advanced breeding lines and commercial varieties).

Parameter Or Variable a (mmol/g DM
Incubated) 1

b (mmol/g DM
Incubated) c (h−1) P8 (mmol/g DM

Incubated)
P24 (mmol/g

DM Incubated)
P40 (mmol/g

DM Incubated)
Pmax (mmol/g

DM Incubated) Final pH

a (mmol/g DM incubated) 1 - - - - - - -

b (mmol/g DM incubated) −0.209 *** 2 1 - - - - - -

c (h−1) −0.363 *** −0.365 *** 1 - - - - -

P8 (mmol/g DM incubated) 0.614 *** 0.169 *** 0.207 *** 1 - - - -

P24 (mmol/g DM incubated) 0.213 *** 0.607 *** 0.150 *** 0.846 *** 1 - - -

P40 (mmol/g DM incubated) 0.187 *** 0.789 *** −0.101 * 0.719 *** 0.957 *** 1 - -

Pmax (mmol/g DM incubated) 0.291 *** 0.875 *** −0.534 *** 0.469 *** 0.702 *** 0.866 *** 1 -

final pH 0.327 *** −0.567 *** 0.0103 NS −0.0347 NS −0.348 *** −0.425 *** −0.401 *** 1
1 a: gas production intercept; b: gas production maximum increment; c: fractional rate of gas production; P8: gas production at 8 h of incubation; P24: gas production at 24 h of incubation; P40: gas production at
40 h of incubation; Pmax: theoretical maximum gas production. 2 ***: p < 0.001; *: 0.01 ≤ p < 0.05; NS: non-significant (p ≥ 0.10). No tendencies (0.05 ≤ p < 0.10) were observed.

Table 4. Relationships between total gas production at 8, 24, and 40 h of incubation and the theoretically maximum gas production, with proximate composition and morphological
variables of straw from three genetic improvement trials (Oats 1, advanced breeding lines and commercial varieties; Oats 2, commercial and historical varieties; Wheat, advanced breeding
lines and commercial varieties) incubated in rumen in vitro cultures.

Response Equation

P8 (mmol/g DM incubated) 1 y = 2.17(±0.18; p < 0.001)− 0.032(±0.0088; p < 0.001)ADL− 0.012(±0.0042; p = 0.006)Cel + 0.080(±0.011; p < 0.001)avΦ; R2 = 0.58(p < 0.001)

P24 (mmol/g DM incubated) y = 4.71(±0.30; p < 0.001)− 0.0748(±0.0142; p < 0.001)ADL− 0.0239(±0.00678; p < 0.001)Cel; R2 = 0.49(p < 0.001)

P40 (mmol/g DM incubated) y = 6.11(±0.375; p < 0.001)− 0.103(±0.0178; p < 0.001)ADL− 0.0371(±0.0085; p < 0.001)Cel; R2 = 0.56(p < 0.001)

Pmax (mmol/g DM incubated) y = 5.45(±0.162; p < 0.001)− 0.199(±0.0269; p < 0.001)ADL; R2 = 0.43(p < 0.001)

c (h−1) y = 0.042(±0.0044; p < 0.001) + 0.00068; p = 0.003)ADL− 0.0029(±0.00088; p = 0.002)RΦ; R2 = 0.25(p < 0.001)
1 P8: gas production at 8 h of incubation; P24: gas production at 24 h of incubation; Pmax: theoretical maximal gas production; c: fractional rate of gas production; ADL: % acid detergent lignin content in the dry
matter (DM); avΦ: average diameter of the first and second internodes; Cel: cellulose content in the DM; RΦ: ratio of diameters of the first and the second internode.
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4. Discussion

It has been proposed that variation in the nutritive value of straw could be incorpo-
rated into crops breeding programs as a trait for genetic selection [11,13,27]. This propo-
sition requires the existence of genetic variation in the nutritive value of straw, and the
absence of undesirable associations between the nutritive value of straw and those agro-
nomic traits important to crop production [27].

In the present study, we compared in vitro gas production of straw of various geno-
types of wheat and oats at 8, 24 and 40 h of incubation, as well as the theoretical maximal
gas production Pmax, and the fractional rate of gas production. Those time points were
chosen because of their relationship with different animal intake and digestion variables.
Rumen retention times of around 40 h were reported for diets based on wheat [28] and
barley [29,30] straw; hence we evaluated the effect of the genotype on gas production
adjusted to what could be a typical rumen retention time for straw. We found that straw
of different genotypes of wheat and oats differed in gas production at 40 h of incubation,
although the differences were moderate, with the maximum P40 being between 22 (Oats 2
trial) and 12% (Wheat trial) over the minimum P40, and between 9.9 (Oats 2 trial) and 4.7%
(Wheat trial) over the median P40.

Gas production at 8 h of incubation was a better predictor of DM intake (DMI) of cattle
and sheep fed straws from 54 varieties of wheat and barley than gas production at earlier
or later incubation time points [17,31]. Thus, we also evaluated gas production adjusted to
the earlier incubation time point of 8 h, finding significant effects of the genotype (Oats 2
trial) or tendencies (Oats 1 and Wheat trials).

While gas production at 8 h has been shown to be the best predictor of DMI, gas pro-
duction at early time points can be highly influenced by the ratio of volume of rumen
inoculum to the amount of substrate [31] and day-to-day changes in the inoculum fibrolytic
activity [24], in comparison with gas production at later time points. Thus, we also studied
gas production at an intermediate time point of 24 h, which was regarded as being more
stable among incubations and experiments compared to the early 8 h time point, and,
unlike later time points, was at the same time positively related to gas production rate c.
The effect of the crop genotype on P24 was also significant in all three trials—although the
same as with other time points, the extents of the differences were moderate. In any case,
P8, P24, P40, and Pmax were all positively and highly correlated with each other, which leads
us to interpret that the main conclusions about the effect of wheat and oats genotype on
straw digestion hold for all gas production time points.

Correlations between gas production kinetic parameters a, b, and c imply that infor-
mation provided by one parameter is partially contained in others [31]; however, although
all three parameters a, b, and c were significantly and negatively correlated in our study,
correlations were numerically lower compared to the study by Blümmel and Becker [31].
Gas production rate c and Pmax were moderately and positively associated in the study
by Blümmel and Becker [31]. In contrast, we found a negative association between gas
production rate c and Pmax, which is undesirable as it implies that more rapid digestion of
the potentially digestible fraction is associated with a greater proportion of undigestible
fractions. We found moderate effects of oats and wheat genotypes on gas production
kinetics parameters. Genetic effects have been reported for proximate composition, in vitro
digestibility, and gas production of straw of wheat, barley, and oats [14,32–36], with variable
results in other studies [37,38]. Previous work also reported differences among sorghum
cultivars in stover composition and in vitro [15,39,40] and in vivo OM digestibility, and
intake, and nitrogen balance [15,41]. Differences among historical oats varieties (Oats 2
trial) existed but did not relate to the year of registration, which might be expected as straw
compositional and nutritional characteristics were not introduced as a criterion for genetic
selection at any point in time.

Although not statistically analyzed, straws of different genotypes of wheat and oats
also ranged considerably in CP and ADL contents, and in IVDMD. Cereal varieties can dif-
fer widely in straw composition [2], which affects straw nutritive value. Variation in in vitro
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digestibility of oats and wheat [14,34,42] and barley [37] straw has also been reported.
Other works reported less variation in in vitro digestibility of wheat straw [35,36,43].

We included cellulose and hemicellulose as regressors available for the stepwise
multiple regression procedures rather than the originally determined NDF and ADF
fractions, because the correlations between cellulose, hemicellulose, and ADL were lesser
than the correlations between NDF, ADF and lignin, as the sequential fiber analysis causes
ADF to be contained in NDF and ADL to be contained in ADF [20]. It was not surprising
that ADL had a consistently negative association with gas production, as lignin constitutes
a barrier to complete digestion of cell wall polysaccharides [44,45]. The positive association
between rate of gas production c and lignin content was likely the result of the negative
association between the rate and the maximum gas production Pmax, as Pmax was in turn
negatively related to lignin content. Cellulose content was also negatively related to gas
production, except for Pmax, indicating perhaps that most cellulose was potentially but
slowly digestible. Cellulose is digested in the rumen primarily by specialized bacteria and
fungi, but the architecture of the plant cell wall and the interactions between cellulose and
lignin and hemicellulose in the cell wall limit the rate of cellulose digestion [46–48].

There were significant effects of the genotype of wheat and oats on the morphological
variables of straw measured. In agreement with our results, considerable variation in the
percentage of leaves and other botanical fractions in crop residues of wheat, oats and barley
has been reported [2]. Stems are less digestible than leaves [14,37,49], although in our
study the percentage of leaves was not selected as an important explanatory variable of gas
production in the stepwise multiple regressions. Conversely, stem average diameter was
associated positively with P8, and the ratio between the diameters of the first and second
internodes was associated negatively with the fractional rate of gas production. The stem
diameter might then be associated with histological characteristics influencing the early
stages of microbial digestion, hence perhaps impacting P8 and c. A relationship between
barley stem diameter and in vitro digestibility was not previously found [13], although in
that research in vitro digestibility was determined through the Tilley and Terry [50] and
the Goto and Minson [51] pepsin-cellulase methods, both of which extend beyond the early
digestion period.

In agreement with the present study, previous research reported no undesirable associ-
ations between the nutritive value of crop residues of wheat, barley, oats, rye, and triticale
evaluated in vitro or in sacco, and agronomic traits such as grain yield and incidence of
diseases and lodging [33,49,52–54]. On the other hand, weak but negative associations
were found more recently between grain yield and straw quality traits in wheat [35,36].
Colucci et al. [32] found no relationships between straw OM in sacco digestibility and grain
yield in wheat and oats, but a negative relationship in barley. There was no relationship
between intake of digestible OM intake of sorghum stovers by steers and sorghum grain
yield [41].

In agreement with other studies, variation in nutritional quality of straw was moder-
ate [35,36]. However, the differences observed could potentially translate into economic
differences in straw price. In Indian markets, good-quality wheat straw can be paid be-
tween 10% and 17% more than bad-quality straw [35]. A moderate increase in in vitro
digestibility of sorghum stovers of five percentage units was associated with an increase
of 28% in market price [55]. Although not statistically analyzed, the range in IVDMD
observed in our three breeding trials was considerable, implying the possibility of the
quality of straw influencing its price.

5. Conclusions

Moderate differences in gas production kinetics were found among genotypes of oats
and wheat. Gas production was not associated undesirably with grain yield in oats and
wheat and with resistance to diseases and lodging in oats. Future research should compare
in situ and in vivo digestibility of genotypes contrasting in in vitro gas digestion kinetics
identified in the present study. If experiments with animals confirm the present results,
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gas production kinetics can be used to identify breeding lines and varieties of oats and
wheat with greater digestibility.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11061552/s1, Table S1. Effect of oats and wheat genotypes from three breeding trials
(Oats 1, advanced breeding lines and commercial varieties; Oats 2, commercial and historical vari-
eties; Wheat, advanced breeding lines and commercial varieties) on straw morphology; Table S2.
Prediction of in vitro dry matter digestibility form gas production at 8, 24 and 40 h of incubation
and from the theoretical maximum and the fractional rate of gas production; Table S3. Coefficients
of determination between agronomic traits and gas production kinetic parameters of straw from
three genetic improvement trials (Oats 1, advanced breeding lines and commercial varieties; Oats
2, commercial and historical varieties; Wheat, advanced breeding lines and commercial varieties)
incubated in rumen in vitro cultures.
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