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Abstract: Abiotic stresses, such as drought, salinity, heavy metals, variations in temperature, and
ultraviolet (UV) radiation, are antagonistic to plant growth and development, resulting in an overall
decrease in plant yield. These stresses have direct effects on the rhizosphere, thus severely affect
the root growth, and thereby affecting the overall plant growth, health, and productivity. How-
ever, the growth-promoting rhizobacteria that colonize the rhizosphere/endorhizosphere protect
the roots from the adverse effects of abiotic stress and facilitate plant growth by various direct
and indirect mechanisms. In the rhizosphere, plants are constantly interacting with thousands
of these microorganisms, yet it is not very clear when and how these complex root, rhizosphere,
and rhizobacteria interactions occur under abiotic stresses. Therefore, the present review attempts
to focus on root–rhizosphere and rhizobacterial interactions under stresses, how roots respond to
these interactions, and the role of rhizobacteria under these stresses. Further, the review focuses on
the underlying mechanisms employed by rhizobacteria for improving root architecture and plant
tolerance to abiotic stresses.

Keywords: root; rhizosphere; rhizobacteria; root morphology; abiotic stresses

1. Introduction

Stress is any environmental factor that can adversely affect plant growth and de-
velopment and decrease the final yield. All the major abiotic stresses lead to the major
declines in the yield of globally important crop plants. Drought stress affects leaf expan-
sion, stem elongating, root proliferation, and reduces water and nutrient uptake [1]. Water
stress for a prolonged duration also declines leaf water potential and stomatal closing
and opening, delays flowering, and decreases seed number and size [2–4]. Salt stress is
the most stubborn among all abiotic stresses and has prolonged deleterious effects on
glycophytes [5,6]. Many plants cannot endure salt concentrations of more than 200 mM [7],
as high salinity reduces the rate of seed germination, the establishment of seedlings, veg-
etative growth, and increases the osmotic pressure, with ion toxicity ultimately leading
to oxidative damage [8–10]. Heat stress affects overall plant morphology, physiology, and
biochemistry, leading to stunted plant growth and a reduction in plant biomass and pro-
ductivity [11,12]. Similarly, heavy metals have direct and indirect effects on plant growth,
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significantly reduce plant growth, and disturb various physiological and molecular mech-
anisms of plants, resulting in chlorosis, senescence, and an inhibition of chlorophyll and
photosynthesis [13–15]. The above-mentioned stresses are collectively known as abiotic
stresses, which are a pretesting threat to crop growth and agriculture and responsible for
great crop yield loss and future food safety [16–18].

Plant roots interconnect with a specific group of soil microorganisms that inhabit the
root vicinity, known as the rhizosphere. The rhizosphere is considered one of the most
composite ecosystems on earth, containing millions of microbial cells—but the number
changes according to plant genotype and growth stages [19]. In the rhizosphere, plant roots
secrete various compounds that act as a chemical attractant for soil microorganisms [20].
These root exudates also modify the physico-chemical properties of the soil and thus, adjust
the structure of soil microbial communities in the close vicinity of the root surface [21,22].
Rhizobacteria that inhabit the rhizosphere alleviate the influences of abiotic stresses on
plants through a number of different mechanisms, which include alterations in phytohor-
mone levels, metabolic adjustments, antioxidant defenses, bacterial exopolysaccharides
(EPS), and protecting and improving the root growth. These microorganisms can modulate
the expression of plant metabolites and improve their photosynthetic, carbohydrate, and
protein content, thus improving the yield-related traits under stress [23]. They improve
plant growth by enhancing nutrient and water uptake from the soil even under stressful
environments [24]. They also improve the phosphate and nitrate reductase activities un-
der water-stressed conditions [25] and limit the Na+ accumulation under salt stress [26].
Furthermore, they indirectly promote plant growth by decreasing the damaging effects
of pathogenic organisms by producing antagonistic substances (Figure 1) [27]. The PGPR
Burkholderia phytofirmans improved the photosynthesis and defense responses of Arabidopsis
thaliana to pathogenic attack [28], whereas Pseudomonas putida improved the systemic
resistance and priming of wheat plants to pathogen attack [29].
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Figure 1. Adverse effects of abiotic stresses on root and shoot growth. Abiotic stresses adversely
affect root growth, which results in an overall decrease in plant growth due to an extreme deficiency
of water and nutrients in the aboveground parts of the plant.

In this review, we summarize and discuss the current understanding of root–rhizosphere
and rhizobacterial interactions to abiotic stresses. We first summarize the impacts of abiotic
stresses on overall plant growth and yield. We then elucidate the role of rhizobacteria under
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abiotic stresses and evaluate the strategies of rhizobacteria for improving root growth and
plant tolerance mechanisms.

2. The Root–Rhizosphere and Rhizobacterial Alliance

Root-associated rhizobacterial communities play an important role in the maintenance
of plant health under abiotic stresses. Plant–microbial associations happen at the rhizo-
sphere. The rhizosphere consists of both beneficial and pathogenic microorganisms. This
rhizobacterial community of the rhizosphere changes with changes in soil properties [29].
Interactions between rhizobacteria in the rhizosphere have intuitive effects (i.e., improve-
ment of the soil nutrient content, remediation of HMs, minimization of soil disturbances
and root growth and soil immune responses) on soil health and improve the nutritional
status of the soil, which is important for better plant growth [30]. A surfeit of these interac-
tions between the roots, rhizosphere, and rhizobial microbes also improves root growth
and proliferation, which play a critical role in the exchange of resources between the shoots
and the soil environment [31,32]. Rhizobacteria also benefit crop production by reducing
the dependency on chemical fertilizers to attain high production yields.

This rich rhizosphere–rhizobacterial interaction defends root exudates, which con-
sist of various organic compounds that attract the microorganisms towards the root
vicinity [33,34]. Root exudation arbitrates plant–microbe interactions by root colonization
and the promotion of root growth. As Neal et al. [35] reported, there is an increase in the
removal of benzoxazinone from the maize rhizosphere due to the presence of P. putida. Root
exudates contain a wide array of chemical constituents, including amino acids, peptides,
sugars, enzymes, vitamins, organic acids, and different types of primary and secondary
metabolites [36,37]. The microbial soil diversity depends on the type and composition
of root exudate, which supports the growth of useful microorganisms that can assist in
plant health and their productivity, while, in other cases, some root exudates also prevent
the growth of harmful microbes [38–42]. The proteome data also provide evidence on the
biological process that occurs in the rhizosphere, as Baysal et al. [43] carried out a proteomic
approach for studying the control of soil-borne pathogens with the help of Bacillus species.
Bona et al. [44] used the metaproteome approach for studying the microbial communities
and their activities in the rhizosphere. They reported the rhizosphere proteome of Vitis
vinifera, where they found that the bacterial species belonging to the Bacillus, Pseudomonas,
Bradyrhizobium, Streptomyces, and Bulkhorderia genuses are more active in protein expression
and their rhizospheres have more metabolic processes and regulation.

The root exudate strigolactone is also an important signaling molecule that regulates
primary root and root hair length. They are present in root exudates of monocotyledonous
and dicotyledonous plants and are involved in mutualistic interactions with arbuscular
mycorrhizal fungi in the rhizosphere [45]. Strigolactones induce hyphal branching near the
host plant, which enhances the chances of interactions between the host plant roots and
fungi [46]. They may also play an important role in legume–rhizobia symbiosis [47,48].

Among all these root exudates, the most important are organic acids, which not only
act as a source of energy for microbial–cellular metabolism but also act as intermediary com-
pounds in bio-geochemical cyclic reactions taking place in the rhizosphere [49,50]. The low-
carbon molecules of root exudates act as the originator for the biosynthesis of rhizobacterial-
produced phytohormones, whereas tryptophan (Trp) present in the root exudates acts as a
precursor for the production of indole-3-acetic acid (IAA), and is mostly present in the root
tip region [51]. In addition, the precursor for ethylene, aminocyclopropane-1-carboxylic
acid (ACC), also oozes out from plants and can be utilized as a source of nitrogen and
carbon by rhizobacteria [52–54]. Other compounds identified as flavonoids are released by
the roots of leguminous plants, persuading the transcription of rhizobia Nod factors (NF).
Nod factors are responsible for the formation of root hairs and also play an important role
in nodule initiation [55–58].

The root–rhizosphere and rhizobacterial interactions also influence plant responses
to environmental stresses [59–61]. These rhizobacterial species are reported to impart
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abiotic stress lenience by up or down-regulating the stress-responsive genes, such as S-
adenosyl-methionine synthetase, ascorbate peroxidase, and heat shock proteins [62–65].
The root–rhizobial association also prompts resistance against root herbivores and guards
the roots against a number of diseases [66]. The effects of rhizobacteria on the growth
of root hairs and root system architecture were inspected on seedlings grown in vitro in
upright agar plates comprising a mineral medium inoculated with a 108 cfu per mL of
rhizobacteria. The results of the experiment showed significant positive effects of the
inoculated rhizobacteria on root hairs and architecture under in vitro conditions [67–70].

The role of root–rhizosphere and rhizobacterial interactions is essential for plant
growth promotion, nutrient acquisition, and yield quality [71]. It is apparent that mutual
communications occur among plants, soil, and microorganisms, and all such interactions
are intricate and should be accounted for useful outcomes in terms of plant growth and
soil health (Figure 2) [72–76].
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abiotic stresses. Rhizobacteria improve nutrient content and nutrient cycling and help plants to
withstand harsh environmental conditions.

3. Effects of Abiotic Stresses on Root Growth and Rhizosphere

Abiotic stresses adversely affect plant growth and development as well as the overall
growth and morphology of roots, which not only affects the crop quality but also the
final yield. An increase in carbon dioxide (CO2) levels results in global climate change,
consisting of a rise in temperatures and disturbing weather patterns that significantly affect
the plant rhizosphere [77–80].

Plant roots are the major organs responsible for nutrient and water acquisition and
maintaining normal plant growth and yield [81,82]. However, abiotic stresses result in
poor root growth, which results in decreased water and nutrient uptake. Drought stress
has more severe effects on plant roots than any other stress and significantly reduces
its biomass [83,84]. Salinity causes ion toxicity due to an excess of Na+ and Cl−, which
also damages root growth and development [85,86]. High temperatures adversely affect
the root architecture and the roots’ interactions with the surrounding microorganisms
(Figure 1), whereas a decrease in temperature at the root zone adversely affects the process
of nodulation and N-fixation [87,88]. Similarly, the presence of heavy metals (HMs) in
the rhizosphere has toxic effects on root growth (Figure 1) [89]. Among the HMs, lead
(Pb) is the most widespread, causing inhibition of cell division in the root tip and rapid
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inhibition of root growth [90]. The presence of a high concentration of cadmium (Cd) in
the rhizosphere causes visible injuries to the root and shoot, browning of the root tips, and
chlorosis in plant shoots [91–93]. Similarly, chromium (Cr) toxicity also causes chlorosis in
newly developing leaves, and injury to roots [94,95].

Role of Rhizobacteria under Abiotic Stresses

Rhizosphere microorganisms, mainly beneficial bacteria, can increase plant perfor-
mance under stressful conditions and, consequently, improve soil health and enhance root
growth and plant yield [96]. Rhizobacteria either exert a direct stimulation on root and
overall plant growth by fixing nitrogen, the production of plant hormones, and seques-
tering iron and solubilizing phosphate [97–99]. The microbial-produced phytohormones
promote root growth and alter root architecture, triggering an increase in root surface
area [100]. This is considered one of the basic mechanisms employed by root-associated
bacteria for the increases in nutrient uptake. In the rhizosphere, plant–rhizobacteria in-
teractions assist plants through the induction of systemic resistance against pathogens
and 1-aminocyclopropane 1-carboxylic acid (ACC)-deaminase activity. Such stimuli of
rhizobacteria can benefit plant defense against pathogens and can also improve overall
plant yield (Figure 2; Table 1) [101–105].

Table 1. List of rhizobacteria species responsible for abiotic stress tolerance in common crop plants.

Crop Stress Rhizobacteria References

Helianthus annuus Drought Achromobacter xylosoxidans (SF2)
Bacillus pumilus (SF3 and SF4) Castillo et al. [106]

Oryza sativa Drought Azospirillum brasilense Az.39 Ruíz-Sanches et al. [107]

Vigna radiata Drought
Pseudomonas fluorescens strain Pf1

Bacillus subtilis EPB5, EPB22
and EPB31

Saravanakumar et al. [108]

Cucurbita pepo Drought Bacillus circulans ML2, Bacillus
megaterium ML3 El-Meihy [109]

Zea mays Drought
Klebsiella variicola F2,

Pseudomonas fluorescens YX2
Raoultella planticola YL2

Gou et al. [110]

Arachis hypogea Salinity B. licheniformis K11 Lim et al. [111]

Phaseolus vulgaris Salinity Aneurinibacillus aneurinilyticus,
Paenibacillus sp. Gupta and Pandey [112]

Steva rebaundia Salinity Steptomyces spp. Tolba et al. [113]

Abelmoschus esculentus Salinity Enterobacter sp. Habib et al. [114]

Lycopersicon esculentum Heavy metal Pseudomonas aeruginosa,
Burkholderia gladioli Khana et al. [115]

Triticum aestivum Heavy metal Bacillus siamensis Awan et al. [116]

Brassica nigra Heavy metal Bacillus cereus Akhtar et al. [117]

Pisum sativum Heavy metal V. paradoxus 5C-2 Belimov et al. [118]

Solanum nigrum Heavy metal Bacillus genus He et al. [119]

Mentha piperita Heavy metal Alcalegenes faecalis, B. amyloliquefaciens Zafar-ul-Haye et al. [120]

Triticum aestivum Heat Pseudomonas brassicacearum, Bacillus
thuringiensis, Bacillus subtilis Ashraf et al. [121]

Triticum aestivum Heat Bacillus velezensis 5113 Abde El-Daim [122]

Lycopersicon esculentum Heat Bacillus cereus Khan et al. [123]

Solanum tuberosum Salt/Drought/HMs Bacillus pumilus DH 11,
Bacillus firmus 40 Gururani et al. [124]
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It has also been reported by Marulanda et al. [125] that rhizobacterial-inoculated plants
exhibit significant increases in plant growth and yield, as well as in drought tolerance to
semi-arid and arid environments. The application of Phyllobacterium brassicacearum strain
STM196 to Arabidopsis thaliana improved its resistance to moderate water deficit stress by
modulating the rate of transpiration and delaying maturity [126]. The inoculation of plants
with rhizobacteria helps in the mitigation of the deleterious effects of various stresses by
assisting them in the acquisition of less available nutrients and by increasing the levels of
plant growth regulators [12]. Microorganisms with the capability to persist under severe
environmental conditions are more active at vindicating the undesirable impacts of drought
on crop plants [127]. Niu et al. [128] reported that drought-tolerant strains are capable
of producing exopolysaccharides (EPS), which stimulate seed germination and seedling
growth under drought stress. Among all PGPR strains, Pseudomonas fluorescens has the
highest capability of producing EPS and ACC deaminase. Recently, Batool et al. [129]
reported the effects of rhizobacteria in reducing the impacts of drought and maintaining
the higher growth and physio-chemical properties of the plants. They noted a higher
growth rate and leaf area and an increase in dry matter production in inoculated plants.
The isolated PGPR-HAS31 maintained higher chlorophyll, photosynthesis, soluble proteins,
sugars, and enzymatic activities in relation to uninoculated plants.

Kumar et al. [130] studied the effects of salt-tolerant (ST) bacterial strains. Their results
exposed the inoculation of paddy plants with the rhizobacteria Pseudomonas aeruginosa,
and Lysinibacillus sp. boosted the seedlings’ growth under salinity stress. Pseudomonas
aeruginosa exhibited more profound effects than other species and significantly improved
the rate of seed germination and the lengths of shoots and roots. Shultana et al. [131]
measured the effects of rhizobacterial strains isolated from the saline rice field in Malaysia
on the growth and yield of rice plants. Their results revealed significant useful effects of
bacterial inoculation on the rate of transpiration, photosynthesis, and stomatal conductance,
which also resulted in a higher increase in yield. The most frequently used halotolerant
rhizobacteria are Azotobacter, Acinetobacter, Bacillus sp., Pseudomonas sp., Rhizobium sp., and
Serratia sp., which employ different mechanisms, including N-fixation, P-solubilization,
and siderophore formation [132–135]. Similarly, many different reports revealed that
halotolerant microbes significantly enhanced the growth of many crops under both normal
and saline conditions [136,137]. Various ST rhizobacterial species improve the salt tolerance
in plants by the production of different types of osmolytes and antioxidant enzymes and
synthesizing ACC deaminase [138–140].

Temperature is another important variable that influences plant root growth. Fluctua-
tions in the temperature of the root zone also alter shoot growth responses by inducing
changes in the temperature of the shoot apical meristems [77]. It has adverse effects on
the plasma membrane, photosynthesis, phytohormones, and enzyme activity. However,
the rhizosphere microbes have the ability to mitigate the adverse effects of high tempera-
ture stress. They protect their membranes and nucleic acids under such conditions and
contribute to normal plant growth. Some microorganisms are better in the production of
biofilm and can help plants to tolerate high salt and temperature stress [141]. Moreover,
B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed better production of the bioactive
secondary metabolite apigenin-7-O-glucoside, whereas inoculation with Pseudomonas sp.
strain AKM-P6 and P. putida strain AKM-P7 enhanced the tolerance of sorghum and wheat
seedlings to high temperature stress due to the synthesis of high-molecular-weight proteins,
and also improved the levels of cellular metabolites [142,143]. Zhu et al. [144] observed
positive physiological effects of the arbuscular mycorrhizal fungus Glomus etunicatum
on Zea mays plants at a range of different temperatures (5–40 ◦C) when compared with
uninoculated plants. Similarly, Pedranzani et al. [145] showed an increase in antioxidants
in the shoots and roots of Digitaria eriantha and a reduction in cellular lipid peroxidation
in plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis under
cold stress (4 ◦C).
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Soil microbes maintain an efficient flow of water and nutrients to plants under heat
stress conditions [146], whereas thermotolerant phosphate solubilizing bacteria act as biofer-
tilizers in agriculture and are involved in the biogeochemical cycling of phosphorus [147].
One of the common mechanisms inked by rhizosphere microorganisms for reducing the
effects of heat stress in plants is the induction of osmoprotectants and heat shock proteins
(HSP). The modulation of the levels of phytohormones, secondary metabolites, and the
production of ROS are some of the important mechanisms employed by rhizosphere mi-
croorganisms for combating the adverse effects of heat stress. Kang et al. [148] reported an
increase in the content of GA and ABA and the reduction in the content of jasmonate and
salicylate in pepper plants inoculated with a gibberellin-producing PGPR. This alteration
in the content of phytohormone/plant growth regulators resulted in an increase in plant
growth under low temperature stress conditions. Issa et al. [149] reported that bacterium
Burkholderia phytofirmans significantly enhanced the production of phenolics, proline, and
starch under heat stress and was able to protect the tissues of tomato against heat. Ro-
driguiz et al. [150] also reported Curvularia protuberate-induced heat stress tolerance in
tomatoes. Gram-positive microorganisms possess heat-resistant spores that are used in the
formulation of stable and dry powder products [151].

Rhizobacteria are known to affect the movement and accessibility of HMs by releas-
ing various chelating agents or by the process of acidification, phosphate solubilization,
and redox reaction and thus, enhance the phytoremediation of HMs [152]. The aptitude
of microorganisms to degrade pollutants largely depends on the pH, temperature, and
moisture content of the environment in which they live [153]. Microorganisms can also
cleanse metals by valence conversion, volatilization, or extracellular chemical precipita-
tion [40]. However, the co-inoculation of Bacillus subtilis was found to be more effective
against the remediation of HMs than a single inoculation. Some bacterial species produce
iron-chelating substances called siderophores, which enhance the mobility and reduce the
bioavailability of metals [154]. Sulfate-reducing bacteria have the ability to convert sulfate
to hydrogen sulfate, which then reacts with heavy metals and converts them to insoluble
forms of metal sulfides [155]. The oxalate crystals produced by mycorrhizal fungi are also
known to immobilize and detoxify HM [156].

Tiwari et al. [157] reported that plant-associated bacteria reduce the accumulation
of various metals in plant tissues and also assist in reducing metal availability in the
soil through a number of different mechanisms. The practice of rhizobacteria in combi-
nation with plants is estimated to deliver high efficacy for phytoremediation [158–160].
Khanna et al. [161] also reported the role of Pseudomonas aeruginosa and Burkholderia gladioli
in the alleviation of Cd stress (0.4 mM) in the 10-day old seedlings of L. esculentum. They
revealed the adverse effects of Cd stress on root and shoot growth and on plant biomass.
However, the bacterial-inoculated plants showed improved plant growth and resistance
to Cd toxicity. The usage of these beneficial rhizobacteria is reflected as one of the most
capable approaches for harmless crop management practices in HM-contaminated soils.
Plant–microbe interactions help in adapting plants to metalliferous environments and
increase microbial-assisted metal tolerance.

4. Strategies of Rhizobacteria for Improving Root Architecture under Stresses

Rhizobacteria efficiently colonize the roots of crop plants and enhance their growth
by a number of different direct and indirect mechanisms. The alteration of root system
architecture by root-associated rhizobacteria involves the assembly of phytohormones,
for example, auxin, gibberellins, and other signaling molecules that lead to greater lateral
root branching and growth of root hairs. As these rhizobacteria attach to the plant root
surface, they convert root exudates into phytohormones [162–166]. The composition of
the root exudates change along with the plant development; hence, the rhizo-microbiome
alignment varies consequently [167–169]. They also show the antagonistic activities against
the phytopathogenic microorganisms by producing siderophores, enzymes, the synthesis
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of antibiotics, antifungal compounds, and essential nutrients, thus improving the root
architecture under all these stressful conditions [170–172].

The root colonization pattern of rhizobacteria like Bacillus and Pseudomonas has been
well-described in numerous plants, including tomato [173], cucumber [174], Arabidopsis
thaliana [175], wheat [176], and grape [177]. Erturk et al. [178] studied the effects of various
strains of Bacillus on rooting and root growth in kiwifruit. The highest rooting ratios
(47.5%) were obtained as a result of Bacillus RC03 and Bacillus simplex RC19 treatments.
The inoculation of wheat and maize plants with these bacterial species also delayed the
onset of the drought symptoms on plants. Both of the applied rhizobacterial species
were synergistic to root branching and length, compared to the control. Enterobacter sp.
demonstrated greater effects on root branching, length, and diameter when compared to
the control (Figure 3) [179–182].
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Figure 3. Strategies of PGPR for improving root architecture and overall plant growth under abiotic
stresses. These microorganisms form a rhizosheath around the roots and produce antibiotics and
biocontrol agents, thus protecting the roots from the adverse effects of environmental stresses.

5. Stress Responsive Metabolites Mediated by Rhizobacteria

Plants experience diverse abiotic stresses throughout their life cycle that need to
be handled in order to survive. Abiotic stress lenience has been studied in relation to
rhizobacteria in order to offer a biological understanding of the alteration and persistence of
rhizobacteria under such stresses [183,184]. Several stress tolerance mechanisms have been
considered for rhizobacterial-arbitrated stress tolerance in plants. It has been reported that
rhizobacterial inoculation alters the metabolic expression in plants under stress and helps
in activating stress-responsive genes and metabolites [185]. The potential of rhizobacteria
producing stress-related metabolites is gaining importance these days. They also have
the ability to modulate the transcriptional machinery responsible for stress tolerance in
plants. Their involvement in the upregulation of ABA-signaling cascades that lead to the
expression of TaWRKY and TaMYB has been reported previously [68,186]. Many genetic
studies have been carried out in plants grown under abiotic stresses to characterize the
bacterial-mediated changes in plants at genetic and metabolic levels [187,188]. Previously,
the genetic studies of drought stress tolerance were categorized by means of molecular and
genetic approaches in pepper plants [184,189–194].
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A large number of secondary metabolites, such as compatible solutes and volatile
organic compounds (VOCs), have been reported to be from halotolerant rhizobacteria that
are crucial for bettering the adverse effects of salinity stress in plants and their associated
partners [195]. Halotolerant rhizobacteria employ key mechanisms for stress tolerance,
which include osmotic adjustments at a cellular level, regulation in ionic transportation,
and maintaining homeostasis by reducing the toxic effects of sodium (Na+) and chlorine
(Cl–) ions [196]. Moreover, these microbes synthesize different types of volatile compounds
and antifungal or antibacterial metabolites, for example, sugar, betaines, amino acids, and
polyols, which help plants to withstand harsh environmental conditions [197–200]. Some
of the halotolerant bacteria can endure stress caused by high salinity due to their innate
ability to accrue some of the vital compatible osmolytes essential for retaining intracellular
osmotic homeostasis that benefit them to persist under high salinity, and they are also
liable for supporting plant growth and survival under such stresses (Figure 4) [201–205].
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The overproduction of reactive oxygen species (ROS) under stress conditions alters
redox states, causes damage to DNA, proteins, and membrane fluidity, and lastly, causes
cell death [189]. Various growth-promoting rhizobacterial species are described to endure
oxidative stress with the support of antioxidant enzyme activity. Sandhya et al. [206]
reported an increase in the activity of ascorbate peroxidases (APX) in Enterobacter inocu-
lated tomato seedlings grown under high saline conditions. Higher catalase (CAT) and
superoxide dismutase activities were recorded in bacterial inoculated gladiolus plants
when compared to the control [207,208].

Endophytic bacteria are capable of synthesizing nitrogenase enzymes under HM
stress and destitute nitrogen conditions by giving ample nitrogen to connected plants.
Doty et al. [209] also isolated endophytic genera (Acinetobacter, Burkholderia, Rahnella, and
Sphingomonas) from Populus trichocarpa and Salix sitchensis, with the ability to synthesize
nitrogenase enzymes, and were capable to fix atmospheric nitrogen [210]. The production
of citric acid, gluconic acid, and oxalic acid by rhizobacteria plays an effective role in the
mobilization of heavy metals, thus protecting the plant roots from the lethal effects of
HMs [211–213]. Paredes-Páliz et al. [214] selected biofilm-forming rhizobacteria based on
their ability for metal tolerance and applied them to Spartina densiflora. The inoculated
plants were then allowed to grow for four months and then harvested. The frozen har-
vested plant parts were used for the determination of enzyme assays and gene expression.
They noted increases in the activity of SOD, CAT, and APOX and a 2-fold increase of
thiobarbituric acid reactive substances (TBARs) that resulted in membrane and cell dam-
age. However, the created oxidative stress index (OSI) was significantly decreased (>50%)
upon inoculation.

Changes in gene expression in relation to ethylene biosynthesis have been reported in
rhizobacterial-inoculated plants grown under abiotic stresses [215–218]. The existence of
ethylene (ET) is vital for normal plant growth and fruit ripening, but under stress conditions,
the production of ethylene significantly increases, which has negative effects on seed
germination and root growth [219,220]. However, ACC deaminase-containing rhizobacteria
can hydrolyze ACC, the precursor of ET, thus decreasing the extra ethylene production
under stress and saving plants from its inhibitory effects [221–223]. Beneficial rhizobacteria
enhance the synthesis of proline in abiotically stressed plants. The most important proline
synthesizing rhizobacteria are Burkholderia [224], Arthrobacter, and Bacillus [225].

6. Conclusions

Soil microbiomes and especially rhizobacteria possess different mechanisms by which
they improve soil health, root growth, and the tolerance of plants to various abiotic stresses.
The ability of these bacteria to survive under abiotic stresses makes them a brilliant can-
didate for sustainable agriculture. They improve root access to nutrients and water and
improve their translocation to the above-ground parts of the plants, leading to overall
improvements in plant growth and yield. These bacterial strains mitigate the adverse
effects of abiotic stress by producing different types of metabolites, including phytohor-
mone, exopolysaccharides, siderophores, antioxidant enzymes, and volatile compounds.
Improvements in plant tolerance to abiotic stresses will result in increased yields and pro-
duction of crops, even under stressful environments. This can be achieved via the search,
selection, and engineering of rhizobacterial species capable of resistance to abiotic stresses.
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