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Symptomless fungal endophytes in the genus Epichloë are repeatedly mentioned to

increase tolerance of cool-season grasses to a wide range of environmental stress

factors, mainly drought. However, the generality of this idea is challenged because (i)

most studies have been conducted on two economically important forage grasses {tall

fescue [Festuca arundinacea (Schreb.) Dumort] and perennial ryegrass (Lolium perenne

L.)}, (ii) endophyte-mediated mechanisms and effects on plant responses to drought

have shown to be highly variable across species, and that (iii) symbiosis incidence in

plant populations occurring in extremely arid environments is usually low. We question

this idea by reviewing the existing information about Epichloë fungal endophyte effects on

drought tolerance in cool-season grasses. We combined standard review, vote counting,

and calculation of effect sizes to synthesize the literature, identify information gaps, and

guide future research. The total number of studies was higher for domesticated than

for wild species, a ratio that was balanced when papers with data quality for effect size

calculus were considered. After the drought, endophyte-infected plants accumulated

more aboveground and belowground biomass than non-infected counterparts, while

no effect on tillering was observed. However, these effects remained significant for

wild (even on tillering) but not for domesticated species. Interestingly, despite the

continuous effort in determining physiological mechanisms behind the endophyte effects,

no studies evaluated plant fecundity as a measure of ecological fitness nor vital rates

(such as survival) as to escalate individual-level variables to population. Together with

the high variability in results, our work shows that generalizing a positive effect of fungal

endophytes in plant tolerance to drought may be misleading. Future studies combining

field surveys with manipulative experiments would allow us to unravel the role of fungal

endophytes in plant adaptation by considering the evolutionary history of species and

populations to the different ecological contexts.
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INTRODUCTION

An increasing interest exists in understanding the role of
symbiotic microorganisms on plant phenotypic adjustment to
environmental stresses (Redman et al., 2011; Shankar Naik, 2019;
Acuña-Rodríguez et al., 2020). It is suggested that under different
scenarios of global climate change, microbial symbionts will
be fundamental for plants to face novel stressful conditions
(Redman et al., 2011; Dastogeer, 2018). Drought is one of
the most worrisome aspects of climate change, as its increase
in frequency and severity will directly affect the primary
productivity of natural and managed ecosystems (Dai, 2011;
IPCC, 2018; Volaire, 2018; Slette et al., 2019). Here, we performed
a critical review and analysis of the existing experimental
evidence for the established idea that Epichloë fungal endophytes
improve the ability of host grasses to withstand drought events.

Certain grasses of the tribe Poeae (subfamily: Poöideae)
establish symbiosis with fungal endophytes of genus
Epichloë (family: Clavicipitaceae; phylum: Ascomycota; order
Hypocreales) (Schardl, 2010). Although the symbiosis discovery
dates from the early twentieth century (Freeman, 1904), it
became important in 1977 and 1981 when domestic animals’
intoxications in the United States and New Zealand were
associated with fungal endophytes colonizing aerial tissues of
tall fescue (Festuca arundinacea, syn. Schedonorus arundinaceus,
Lolium arundinaceum) and perennial ryegrass (Lolium perenne)
(Bacon et al., 1977; Fletcher and Harvey, 1981). It is well-
known today that fescue toxicosis and ryegrass staggers are
animal diseases caused by alkaloids (ergovaline and lolitrem-
B) produced by their common associated fungi Epichloë
coenophiala and Epichloë festucae, respectively (Schardl et al.,
2013; Leuchtmann et al., 2014). The importance of these
two forage grass species in temperate regions of the world
triggered an enormous research activity aimed at understanding
the endophyte effects not only on animal health and growth
but also on plant performance, stand persistence, and forage
production (Bacon, 1993; Malinowski and Belesky, 2000, 2019;
Klotz, 2015). Removing fungal endophytes from grass cultivars
was an alternative to avoid the antiquality traits (i.e., toxic
alkaloids) in forage; however, this was also associated with a poor
performance of grass plants in the field (Bouton et al., 2001).
Another strategy was the reinfection of elite grass cultivars with
selected (“friendly”) endophytes, which do not produce toxic
alkaloids but still produce others such as lolines and peramine
that protect host plants against pests (Bouton et al., 2002; Gundel
et al., 2013; Johnson et al., 2013; Lugtenberg et al., 2016).

Including the above-mentioned grasses, there are so far

more than 50 other species that have been described to host

Epichloë fungal endophytes covering a vast range of ecosystems

all over the world (Semmartin et al., 2015). Motivated by its
conspicuous characteristics (namely, “the vertical transmission”
and “the alkaloid-mediated defense of hosts against herbivores”),
the grass–endophyte symbiosis became a model system of studies
in ecology and evolution (Saikkonen et al., 2006; Rudgers
et al., 2009; Gundel et al., 2011; Omacini et al., 2012; Hume
et al., 2020). In fact, the studies of factors driving plant–
endophyte specificity and environmental controls favoring or

not the symbiosis incidence in populations have been among
the major goals in research (Malinowski and Belesky, 2006,
2019; Schardl et al., 2008; Rudgers et al., 2009; Karimi et al.,
2012; Iannone et al., 2013; Semmartin et al., 2015; Schirrmann
et al., 2018). However, it has been not straightforward to explain
the driving environmental factors behind the distribution and
abundance of symbiotic grasses in nature (Saikkonen et al., 2006;
Rudgers et al., 2009; Gundel et al., 2011, 2016; Semmartin et al.,
2015; Wang et al., 2020). Besides, the identification of a strong
bias in the published literature toward studies conducted with
domesticated grasses (tall fescue and the ryegrasses) led to the
conclusion that they were unable to fully represent the diversity
of interaction outcomes of the grass–endophyte symbiosis in
natural ecosystems (Saikkonen et al., 2006).

The endophyte-conferred resistance to herbivory has been
well-documented with fungal-produced alkaloids as responsible
secondarymetabolites to the impaired performance of herbivores
(Clay, 1988; Saikkonen et al., 2013; Schardl et al., 2013; Bastias
et al., 2017). However, underlying mechanisms to the endophyte-
mediated improvement of plant tolerance to abiotic stress
factors—such as drought—have been inconsistent (Malinowski
and Belesky, 2000; Hamilton et al., 2012; Dastogeer, 2018; Wang
et al., 2020). The idea that fungal endophytes improve plant
tolerance to drought triggered ecological hypotheses and field
surveys predicting high endophytic incidence in populations
toward arid extremes of natural precipitation gradients (Lewis
et al., 1997; Gibert et al., 2012; Afkhami et al., 2014). However,
there has been evidence contradicting such predictions: in
extremely arid settings, the incidence of endophytes is low (see
Novas et al., 2007; Gundel et al., 2011; Semmartin et al., 2015).
Motivated by this observation, we have recently pointed out that
inferring the causal mechanisms of Epichloë fungal endophyte
effects on host plant performance from short-term and controlled
drought experiments with domesticated grass species may be
misleading to understand the abundance and distribution of the
grass–endophyte symbiosis in nature (Gundel et al., 2016).

Here, we question the widely accepted idea that Epichloë
fungal endophytes confer host grass tolerance to drought, as it
is not enough supported by experimental evidence to generalize
across plant and fungus species and environmental conditions.
Besides being the first step for a quantitative review, an analysis of
the scientific literature is particularly important for synthesizing
information, uncover biases, identify knowledge gaps, and guide
future research (see e.g., Saikkonen et al., 2006; Nunez-Mir et al.,
2016; Gurevitch et al., 2018; Sayer, 2018). We conducted a critical
synthesis, summarizing the existing information about Epichloë
fungal endophyte effects on drought tolerance in grasses. We
specifically addressed the presumption that there would be a
bias of information toward F. arundinacea first and followed
by L. perenne, due to their importance as domesticated forage
grasses. Then, we predicted that the effect of endophytes for those
domesticated species will substantially differ from that observed
in wild grasses. Although our ultimate goal was to carry out a
quantitative assessment, a big proportion of the published studies
(especially for F. arundinacea) failed to meet the requirements
for being included in the meta-analysis (see sectionMaterials and
Methods). Therefore, we summarized the published information
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on the topic by complementing the calculation of effect sizes with
standard review and vote counting.

MATERIALS AND METHODS

The literature review consisted of searching for papers meeting
the criteria of having “endophyte” AND (“Acremonium” OR
“Epichloë” OR “Neotyphodium”) AND “drought” in their title,
abstract, or keywords. The searching was conducted in September
2020, with no lower date limit, and performed with the scientific
search engine Scopus (www.scopus.com). We included the genus
Acremonium because, in some early articles, it was used for
designating Epichloë/Neotyphodium endophytes. We extended
our search by analyzing the references within each paper. In total,
we found 190 research articles published between 1983 and 2020.
After a careful check on the list, we discarded all those working
with true Acremonium species. Non-experimental articles were
excluded (review articles, commentary, or perspective papers).
The whole process of selection is shown in a Preferred Reporting
Items for Systematic Reviews andMeta-Analyses (PRISMA) flow
diagram in Supplementary Figure 1.

We filtered the articles that fit into the following criteria: (i)
endophyte-infected and non-infected plants were subjected to a
drought treatment; (ii) at least one measure of plant performance
was reported (e.g., biomass, number of tillers, survival, or any
physiological variable); and (iii) the data included means, a
measure of variation (standard deviation or standard error), and
three or more independent replicates for each treatment. After
that, the database consisted of 87 cases (experiments) from 26
studies (papers) (Supplementary Figure 1). For each case, we
also extracted species names of both the host plant and the
endophyte fungus (Supplementary Table 1). Grass species were
classified into domesticated or wild species following the paper
by Glémin and Bataillon (2009). Given that many studies did
not meet criteria iii, we used vote counting as a summary of the
existing information. Although we are aware of the limitations of
such a simple alternative (Koricheva and Gurevitch, 2013; Lortie,
2014), it can be still useful to visualize the existing information
on a given topic put all together.

We included multiple observations per study when the
data reported came from independent experiments or different
plant populations. Nonetheless, when different measures were
reported from the same experiment, we selected the last response
variable/s on plants after the drought condition was stopped.
Additionally, in cases where other treatments were included
(e.g., different nutrient levels), we selected data from the control
condition to avoid factors’ confounding effects. For quantitative
analysis, the mean, the standard deviation, and the sample size
were extracted from the article (criteria iii). When presented
in figures, data were extracted using the GetData software
(getdata-graph-digitizer.com). For each case, we calculated an
effect size using the standardizedmean difference metric between
endophyte-infected and non-infected plants, and its confidence
interval in the “metafor” package 1.9-8 version in r 3.2.3
(Viechtbauer, 2010). The effect size was considered significant
if the confidence interval did not overlap with zero (Koricheva

and Gurevitch, 2013). A positive effect size means that endophyte
infection improved plant performance under drought stress.
We also estimated the level of consistency among studies by
calculating between-studies heterogeneity (τ2 and associated Q
statistics; Viechtbauer, 2010). Because τ2 is dependent on sample
size, we calculated I2-values, providing a standardized estimate
of total heterogeneity ranging from 0 to 1. We used several
approaches to verify that our results were not impacted by
publication bias (Koricheva and Gurevitch, 2013), namely, an
inspection of funnel plots and calculation of fail-safe numbers.

RESULTS

Search and Data Collection
Our search recovered a total of 190 publications, of which
83 were specific about the topic addressed here, that is, the
endophyte-mediated responses of plants to drought. From the
above-mentioned studies, only 26 were experimental, while the
remaining 57 were reviews, conference, or perspective papers, or
had no factorial designs for testing the differential performance
of endophyte-infected and non-infected plants under drought.
Those latter studies were field surveys of endophyte incidence
along aridity gradients or in environments with contrasting
precipitation regimes. The word “drought” in those non-
specific but experimental articles (n = 107) was present in
the abstract and therefore caught by the searching (Figure 1;
Supplementary Material). However, since water availability was
not experimentally manipulated in those works, they were not
included in the calculations.

Of the 83 articles that were about endophyte effect on
host plant responses to drought, not all were appropriate
for a quantitative approach (i.e., meta-analysis) mainly
because most of them did not report either the number
of replicates or a variation measure around mean values
(Supplementary Figure 1). Due to that, we made a summary
table with vote counting as a descriptive synthesis of the
literature on the topic. F. arundinacea and L. perenne were
the most studied species with 16 (≈30%) and 13 (≈24%)
experiments each, respectively. Apart from those species and
except for Achnatherum inebrians, Festuca arizonica, Festuca
pratensis, and Festuca rubra, which have on average three
studies each, all the other 11 species have been studied once
(Table 1). Most studies used biomass [either total (aboveground
+ belowground) or just aboveground] and the number of
tillers as integrative response variables of plant performance
(Table 1). For both response variables, the number of studies
yielding positive, neutral, or negative results of the endophytes
on plant performance under drought was evenly distributed
across species. No studies were found evaluating the impact of
drought on plant fitness (i.e., fecundity or seed production).

Growth and Morphometric Variables
Overall, the symbiosis with endophytes was associated with
higher above- and belowground biomass under drought
conditions, suggesting an improvement of plant fitness
(aboveground biomass: zval = 3.234, P = 0.0012; belowground
biomass: zval = 2.471, P = 0.013; Figure 1). This pattern was
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FIGURE 1 | The effects of Epichloë fungal endophytes on grass species performance (aboveground biomass, belowground biomass, and the number of tillers) under

drought conditions. Mean effect sizes (SMD, standardized mean difference) and confidence intervals (95%CI) for the comparisons between E+ and E– plants. The

symbiotic associations are grouped in domesticated and wild grass species. The number of studies is indicated on the right to each value between parentheses.

replicated only in wild grasses (aboveground biomasswild species:
zval = 2.719, P = 0.006; belowground biomasswild species: zval
= 2.093, P = 0.036) but non-significant on domesticated
grasses (aboveground biomassdomesticated species: zval = 1.325, P
= 0.185; belowground biomassdomesticated species: zval = 0.360,
P = 0.718) either for aboveground or belowground biomass.
As a whole, the number of tillers was not different between
endophyte-infected and non-infected plants under drought
conditions (tillering: zval = 1.421, P = 0.155). Nonetheless, the
endophyte-mediated promotion of tillering was significant on
wild grasses (tilleringwild species: zval = 2.864, P = 0.004). There
are two points here worth remarking: (i) the very low number
of studies in domesticated grasses (see Supplementary Table 1)
and (ii) the high variability in the results among individual
studies with wild grasses. It is worth noting that despite studies
with domesticated grasses are more numerous in comparison
with those on wild grass spp., few of them met the requirements
to be included in the quantitative calculations.

Plant Physiological Variables
Regarding the adaptation mechanisms associated with the
“avoidance strategy” (which allow plants to maintain an efficient
water balance during drought stress), endophyte-infected plants
seemed to develop a more extensive root system (5 out of
12; see also Figure 1), a more efficient stomata regulation (5
out of 7), and a higher accumulation of solutes (4 out of 6)
compared to non-infected plants (Table 2). Variables associated
with drought tolerance (e.g., those that enable plants to survive
a period of water-deficit accumulation of secondary metabolites)
were commonly increased in endophyte-infected plants [osmotic

potential (7 out of 11), osmotic adjustment (3 out of 4), and
water use efficiency (2 out of 4)] (Table 2). In three out of
four cases (Table 2), an endophyte-associated improvement in
plant performance under drought was observed by boosting
plant recovery once drought conditions were relieved. However,
endophyte-infected and non-infected plants were not different
in the biomass accumulated during the recovery period after a
drought event (QM= 2.821, p= 0.24). Analyzed independently,
the effect size of the drought treatment (pre- vs. post-drought
event performance) were on average −1.157 ± 0.69 for E+
[estimate (±SE), zval = −1.67, P = 0.09, n = 5] and
−1.146 ± 0.689 for E– plants [estimate (±SE), zval = −1.661
P = 0.096, n= 5].

Plant Survival
Of the six experiments evaluating endophyte effects on host plant
survival during drought (Supplementary Material), only one
had merit for being included in the calculus of effect size. In this
article, the endophyte-mediated effect in L. perenne plant survival
was conditional on the origin of populations; it was apparent on
plants belonging to populations collected in xeric environments
(Gibert et al., 2012). When considering all the studies [Festuca
eskia (Gibert and Hazard, 2011) and Bromus laevipes (Afkhami
et al., 2014)], the symbiosis with fungal endophytes improved
survival in plant populations facing drought (Table 1).

DISCUSSION

The idea that Epichloë fungal endophytes improve plant tolerance
to drought is widespread throughout the literature and is
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TABLE 1 | Summary table showing the number of experiments describing beneficial (+), neutral (0), or detrimental (–) effect of an Epichloë fungal endophyte on the host

grass performance variables (biomass, tiller, and survival), under drought conditions.

Host Species Biomass Tillering Survival

+ 0 – NE Net effect + 0 – NE Net effect + 0 – NE Net effect

Achnatherum inebrians 2 1 2 1 2 1 3 NE

Agrostis hyemalis 1 −1 1 NE 1 NE

Ammophila breviiigulata 2 2 1 NE 1 NE

Bromus laevipes 1 0 1 NE 1 1

Elymus dahuricus 1 1 1 1 1 NE

Elymus virginicus 1 0 1 0 1 NE

Festuca arizonica 2 2 2 4 NE 4 NE

Festuca arundinacea 1 4 1 10 0 1 3 1 11 0 2 14 2

Festuca eskia 1 NE 1 NE 1 1

Festuca pratensis 1 1 1 1 1 0 2 NE

Festuca rubra 2 2 0 1 3 0 4 NE

Festuca sinensis 1 1 1 −1 1 NE

Hordelymus europaeus 1 0 1 1 1 NE

Leymus chinensis 1 1 1 NE 1 NE

Lolium perenne 3 4 5 5 −2 2 1 3 9 −1 1 16 1

Poa alsodes 1 1 1 NE 1 NE

Poa autumnalis 1 1 1 NE 1 NE

Global effect 9 1 5

The arithmetic sum represents the prevailing endophyte-mediated effect on each plant species performance. The variables not evaluated within the drought experiments are abbreviated
as NE. Host grass species are in alphabetical order and domesticated species are underlined.

TABLE 2 | Summary table showing adaptation mechanisms for the different

strategies plant may use to withstand drought conditions (sensu Malinowski and

Belesky, 2019) and that can be modulated by Epichloë fungal endophytes.

Strategy Adaptation

mechanism

Observations Sum

For mechanismFor strategy

Avoidance Extensive root system 12 5 =16

Stomata regulation 8 6

Accumulation of

solutes

8 5

Tolerance Accumulation of

metabolites

11 7 =15

Osmotic adjustment 6 5

Cell wall elasticity 0 0

Water use efficiency 5 3

Recovery Higher regrowth 5 4 =4

Bymeans of assigning+1, 0, and−1 for reported beneficial, neutral, or detrimental effects
of endophytes on a given plant adaptation mechanism, the arithmetic sum represents the
prevailing endophyte-mediated mechanisms and strategies.

generally mentioned even in papers not dealing with this
particular aspect. Our review also shows that there is a strong
bias toward the study of this topic in domesticated species—
a pattern that had been previously identified in the study of
other endophyte-mediated effects on plants (e.g., resistance to
herbivores; Saikkonen et al., 2006). In the case of drought,
however, the disparity in the number of studies between
domesticated and wild species is finally balanced when we

considered only those papers with sufficient data quality for
quantitative analysis. This may reflect the historical trajectory
of the investigation around the endophyte effects on plant
tolerance to drought since the early papers using tall fescue
or perennial ryegrass as study models did not, usually, provide
the information to calculate effect sizes in the meta-analysis
(criterion iii; section Materials and Methods). Interestingly,
when only papers that met criterion iii are considered, the
endophyte effects on variables characterizing plant performance
under drought were not significant in domesticated species but
significant and positive in wild species. Therefore, this seems
to differ from what was observed for the endophyte-conferred
protection against herbivores (Saikkonen et al., 2006, 2010)
and may be the result of human-driven selection processes
for high primary productivity in agricultural settings vs. the
natural selection forces shaping the grass–endophyte symbiosis
in production-limited environments.

One of the main research goals across the literature has been
to determine the underlying mechanisms of the endophyte-
mediated effects on host plant performance under drought
(Malinowski and Belesky, 2000, 2019; Hamilton et al., 2012;
Dastogeer, 2018; Wang et al., 2020). Accordingly, we found
several studies linking physiological and morphological response
variables with the performance of endophyte-infected and non-
infected plants facing drought conditions (Malinowski and
Belesky, 2000; Hamilton et al., 2012; Wang et al., 2020).
We took the scheme proposed by Malinowski and Belesky
(2019) for the different plant mechanisms (here “strategies”)
through which plants canmaintain a relatively good performance
under drought stress. We found that compared to non-infected
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plants, endophyte-infected plants tended to have higher root
biomass (likely associated with a more extensive root system
and higher exploration of soil), a better stomata regulation,
and a higher accumulation of solutes. These three physiological
mechanisms are associated with improved water uptake,
reduced transpiration, and higher water storage (Malinowski
and Belesky, 2000, 2019; Acuña-Rodríguez et al., 2020). In
the same way, the endophyte-mediated higher accumulation
of secondary metabolites would be associated with improved
osmotic adjustment and water use efficiency allowing individual
plants to maintain growth under water restrictions. Besides
free sugars, sugar alcohols, and amino acids (Singh et al.,
2011), the fungal-alkaloids have been suggested to play roles
as osmotic molecules (Nagabhyru et al., 2013), a characteristic
that increases the difference between endophyte-infected and
non-infected plants. Despite this effort in linking physiology
and morphological traits with plant performance under drought
conditions, it is interesting to highlight the scarce connection
of these findings with plant ecological fitness. No experiment
conducted to evaluate the endophyte effect on plant performance
under drought uses plant fecundity or seed production as a
response variable of fitness. The consideration of the impact
of drought on seed production and the transgenerational
consequences for progeny performance becomes especially
relevant in species associated with vertically transmitted fungal
endophytes, since this not only determines the host fitness but
also the microorganism persistence (Gundel et al., 2011, 2017;
Cavazos et al., 2018; Donald et al., 2021).

Information resulting from experiments in which soil water
availability is manipulated and the relative performance of
endophyte-infected and non-infected domesticated grass species
is evaluated has been usually used to elaborate ecological
hypotheses to understand the expression of the symbiosis in
nature (e.g., because fungal endophytes increase plant tolerance
to drought, higher frequencies of endophyte-infected individuals
are expected to occur in arid extremes of precipitation gradients).
However, this has yielded contrasting results (Semmartin et al.,
2015; Gundel et al., 2016). A recent paper showed that endophyte
infection frequency in a population can be highly dynamic,
as variation in the environmental context (accounted for
interannual variability in precipitation level) may differentially
affect any of the underlying processes that determine the
symbiosis prevalence, the differential fitness between endophyte-
infected and non-infected plants, and the efficiency with
which fungal endophytes are transmitted (Donald et al., 2021).
Particularly in arid environments, survey studies exploring the
occurrence of endophyte-infected plants have constantly shown
a low incidence of endophyte-symbiotic plants (Novas et al.,
2007; Gundel et al., 2011; Semmartin et al., 2015). As the cost–
effect relation of the endophyte symbiosis may vary along water
availability gradients (Sneck et al., 2017; Donald et al., 2021),
it turns out difficult to establish predictions about the role of
endophytes on plant fitness in arid environments based only on
the relative performance of plants with and without endophyte
under temporary or occasional situations of water shortage.
Although plants present specific adaptations to cope with aridity
conditions, limitations to primary productivity imposed by

permanent situations of water scarcity can make foliar fungal
symbionts energetically expensive to maintain (Semmartin et al.,
2015; Gundel et al., 2016). In those cases, symbiont-delivered
benefits would not payback the maintenance costs.

Even though tall fescue is the most domesticated species for
production purposes by humans, its great variety of ecotypes
associated with its environment of originmakes it a uniquemodel
system for understanding the role of fungal endophytes in plant
adaptation (Hand et al., 2010). In Mediterranean climates, plant
survival to high summer temperatures and water shortage is
a critical fitness trait, and insights on underlying mechanisms
to the endophyte effects on this aspect of performance can
come from well-studied forage species. The high frequency of
endophyte infection in native accessions of Mediterranean tall
fescue (Clement et al., 2001; Piano et al., 2005; Pecetti et al.,
2007) suggests an important ecological role, similar to that
in continental tall fescue ecotypes. Although endophytes often
trigger similar responses in summer-dormant and summer-active
tall fescue accessions in terms of alkaloids and other metabolites
(e.g., phenolic compounds; Assuero et al., 2002; Hamilton et al.,
2012; Qawasmeh et al., 2012; Norton et al., 2016), the symbiosis
can clearly contribute to plant fitness including survival of high
summer temperatures (Malinowski and Belesky, 2019; Acuña-
Rodríguez et al., 2020). Summer-dormant accessions of cool-
season perennial grasses, including tall fescue, that evolved in
the Mediterranean Basin developed an endogenous mechanism
of summer dormancy, which represents drought avoidance
strategy (Volaire and Norton, 2006). Although the genetic and
biochemical bases of summer dormancy mechanism in cool-
season perennial grasses are still not well-understood, it has
been shown that stem determinacy is a major component of
the summer dormancy mechanism in tall fescue, and it is
regulated by TERMINAL FLOWER1 (TFL1-like) genes that
are homologs of CENTRORADIALIS (CEN) gene sequences
(Missaoui et al., 2017). At the biochemical level, oxidative
protection of stem meristems during summer drought has been
proposed as another important component of the summer
dormancy mechanism in cool-season grasses (Malinowski
et al., 2005). Some summer-dormant tall fescue ecotypes
from the Mediterranean Basin harbor endophytes (designated
FaTG-2 and FaTG-3) that are genetically, biochemically, and
morphologically different from E. coenophiala, the endophyte
commonly found in summer-active (continental) tall fescue
ecotypes (Christensen et al., 1993; Clement et al., 2001; Piano
et al., 2005).

For a better understanding of the relationship between
the prevalence of fungal endophytes and their role in plant
adaptation to the environment, we need to integrate individual-
based studies with those with population-level approaches. In
a very few papers, however, demographic approaches using
vital rates as response variables (e.g., survival, plant fecundity,
recruitment) were used to evaluate the endophyte effects on
plant responses to drought. Regarding plant survival, drought
conditions in manipulative experiments are seldom so extreme
as to cause the death of plants. Although plant survival
is a critical demographic variable in population ecology, it
can reflect the probability of individual plants surviving the
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severe stress in physiological studies (McDowell et al., 2008;
Volaire, 2018). Therefore, the survival of individuals may be
a key response variable on which drought stress can operate
as a selective force in favor of endophyte-infected plants in
populations, and it merits more attention. Considering that
the level and intensity of water shortage in manipulative
experiments, are decided based on expert knowledge but
limited information, part of the observed variability may be
just the result of inappropriate approaches. Nonetheless, the
observed variability among species may be explained by the
prevailing and past characteristics of the environment of origin.
Thus, short-term experiments can be adequate and provide
valuable information for domesticated plant species occurring
in agricultural settings but give little information for plant
species that have evolved in arid ecosystems. For species adapted
to arid and semiarid environments, long-term experiments
evaluating vital rates and endophyte-symbiont dynamics over
time would be fundamental for unveiling the impact of water
scarcity (vs. higher restriction, or water addition) on differential
fitness of endophyte-infected and non-infected plants, and
endophyte transmission.

The above-mentioned aspects could bring some light to
understand the sources of the observed variability in results
even within-species of the domesticated grasses. These species
are generally widely distributed and comprise different ecotypes
with divergent strategies such as those described above for tall
fescue. Considering this, the short-term experiments designed
for studying the impact of punctual drought events on active
summer-dormant plants originally from Mediterranean climates
might yield inconclusive results, while the same experiments
carried out with continental ecotypes show significant responses.
This highlights the importance of designing the experiments
taking into account the life-history traits of the ecotypes.
We hope this work sparks future research addressing general
ecological questions on the role of Epichloë fungal endophytes
in plant adaptation to different environments but considering
the difference between the occurrence of drought events in
mesic ecosystems from the existing permanent water shortage of
arid lands. Particularly useful would be to combine field survey
with manipulative experiments along the species distribution
range (e.g., Gibert et al., 2012; Afkhami et al., 2014) but
especially covering the very arid extreme (i.e., ≤400mm year−1;
Gundel et al., 2016). In addition to the challenge of linking
physiological mechanisms of plant adaptation (fitness) to the
different ecological settings (Volaire, 2018), the evaluation

of demographic vital rates, such as survival and fecundity,
and vertical transmission efficiency of symbionts would allow
to identify the endophyte-mediated plant strategies and to
better integrate the ecological scales and levels of organization
(individual to population; Gundel et al., 2008; Donald et al.,
2021). Besides controlling the endophyte-symbiotic status of
plants and water availability, those experiments should also
take into account the changes in the genetic structure of
symbionts’ populations, both of the grass and the fungus
species (Keith, 2000; Leinonen et al., 2019), to unveil the role
of fungal endophytes in plant adaptation to extremely arid
conditions. Under current scenarios of global change, it is

especially relevant to see whether the association with fungal
endophytes will buffer the effect of water shortage and climatic
variability, allowing species to maintain or increase the home-
range distribution.
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