
Received: 31 July 2020 Accepted: 1 December 2020 Published online: 7 March 2021

DOI: 10.1002/agj2.20572

A R T I C L E

B i o m e t r y , M o d e l i n g , a n d S t a t i s t i c s

Design of on-farm precision experiments to estimate site-specific
crop responses

Carlos Agustín Alesso1,2 Pablo Ariel Cipriotti3 Germán Alberto Bollero2

Nicolas Federico Martin2

1 Instituto de Ciencias Agropecuarias del

Litoral (ICiAgro), Universidad Nacional del

Litoral (UNL), Consejo Nacional de

Investigaciones Científicas y técnicas

(CONICET), Facultad de ciencias Agrarias,

Kreder 2805, Esperanza, Argentina,

S3080HOF

2 Department of Crop Sciences, University

of Illinois at Urbana-Champaign, 1102 S

Goodwin, Urbana, IL, 61801, USA

3 Universidad de Buenos Aires Facultad de

Agronomía (FAUBA). Consejo Nacional de

Investigaciones Científicas y Técnicas,

Instituto de Investigaciones Fisiológicas y

Ecológicas Vinculadas a la Agricultura

(IFEVA), Av. San Martín 4453, Buenos

Aires, Argentina, C1417DSE

Correspondence
Nicolas Federico Martin, Department of

Crop Sciences, Univ. of Illinois at Urbana-

Champaign, 1102 S Goodwin, Urbana, IL

61801, USA.

Email: nfmartin@illinois.edu

Funding information
Universidad Nacional del Litoral,

Grant/Award Number: 50320180200012LI;

College of Agriculture, Consumer and Envi-

ronmental Sciences at University of Illinois

at Urbana-Champaign; Illinois Corn Growers

Association

Abstract
Site-specific prescriptions require estimating response functions to controllable

inputs across the field. The methodology of applying geographically weighted regres-

sion to on-farm precision experimentation studies opens new opportunities to study

site-specific responses to inputs in farmers’ fields by locally estimating the regres-

sion coefficients. However, the effect of the experiment’s spatial layout, such as

plot dimensions and randomization, and spatial structure of the yield response on

the experiment performance are yet to be studied. Detailed information about these

effects is needed to improve trial design to detect site-specific responses. A simula-

tion study was conducted using 14,400 fields of 37 ha and 9-m resolution. Coeffi-

cients from a spatial variable response function were drawn from five random fields

generated by unconditional Gaussian geostatistical simulations. Four levels of nitro-

gen were assigned to plots using 18 systematic and randomized chessboard designs

with different plot sizes. Simulated yield data was obtained by combining the coeffi-

cients, treatment, and random error. The effect of spatial structure and the designs was

assessed with measures of agreement between the true and estimated maps of regres-

sion coefficients. The ability to capture or approximate the true spatial pattern of the

response function increased as the underlying response function’s spatial structure

increases. Overall differences in performance between design were observed across

the spatial structure tested, mostly related to randomization and plot dimensions. In

general best results were achieved by systematic designs with small or intermedi-

ate plot sizes (r = 0.54 ± 0.05, MAE = 0.005 ± 0.0005, SDR = 0.81 ± 0.06, and

CP = 0.50 ± 0.04). Our methodology provides a path for testing designs under dif-

ferent spatial variability scenarios.

Abbreviations: CP, coverage probability; DIFM, data-intensive farm

management; GWR, geographically weighted regression; MAE, mean

absolute error; MZ, management zone; OFPE, on-farm precision

experimentation; PCA, principal component analysis; r, correlation

coefficient; SDR, standard deviation ratio; SS, sum of squares; VRT,

variable rate technology.
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1 INTRODUCTION

The goal of agricultural experimentation is to increase the

scientific knowledge on the response of agricultural systems

to manageable inputs such as seeds, fertilizers, pesticides,

and ultimately to help farmers achieving higher yields and
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sustainable systems by making better decisions under vari-

able soil and weather conditions (Maat, 2011). Traditionally,

these experiments are carried out at research centers using

randomized and replicated small-plots designs with different

levels of control of experimental conditions (Piepho et al.,

2011). Although the precision and power achieved in these

experiments could be high, the resulting recommendations are

derived from inference extrapolations, which in many cases,

result in uncertainty related to the variability of soil, weather,

farming systems, and farmer skills (Marchant et al., 2019).

In contrast, on-farm experiments, which are characterized by

larger experimental units and simpler designs, are claimed to

be more representative of real conditions but typically less

precise and less powerful (Piepho et al., 2011). During the

last decade, precision agriculture technologies (e.g., geopo-

sitioning systems, yield monitors, variable rate technology,

etc.) have helped farmers and crop advisors to run farm-scale

experiments almost effortlessly on their farms to compare dif-

ferent agronomic practices or to validate recommendations

from research centers (Panten et al., 2010). At the same time,

the structure of the data collected by machinery with this

technology has challenged the classical statistical methods for

small-plot agronomic experiments requiring new approaches

(Hicks et al., 1997; Plant, 2007). For instance, in a recent sim-

ulation study, Alesso et al. (2019) showed that spatial autocor-

relation, if not modeled, could reduce the efficiency of treat-

ment effect estimators and increases the Type I error. Among

the designs tested, those with smaller experimental units, and

a larger number of replications, performed better.

As the spatial resolution at which inputs can be controlled

within fields increases, farmers and agronomists are more

interested in knowing about the responsiveness of each part

of their fields instead of regional recommendations (Bullock

& Bullock, 2000; Piepho et al., 2011; Pringle et al., 2004a) .

Since the introduction of the precision agriculture concept, the

management zone (MZ) approach has been widely applied as

an interim approach between uniform and site-specific man-

agement (Whelan & Taylor, 2013). In this approach, within-

field variability is clustered into zones with similar character-

istics, which are assumed to also share the same response to

inputs, and thus the same management requirements. If com-

bined with on-farm experiments, this MZs may help to under-

stand the responses at the subfield scale, and if treatments ×
zones interaction exist, there would be room for developing

crop response functions for each zone (Bishop & Lark, 2006;

Piepho et al., 2011). Although the MZ approach is intuitive

and straightforward, the primary assumption behind it, that

is, homogeneity of responses within MZ and heterogeneity

between MZ, is not always met or verified. In addition, to

increase the spatial resolution at which a crop can be managed,

information about how crop yield responds to varying treat-

ments and how those responses vary over space is required

(Bullock & Bullock, 1994).

Core Ideas
∙ Application of geographically weighted regression

estimate site-specific responses.

∙ On-farm Precision Experiment designs can be

compared with simulation studies.

∙ Systematic treatment assignments are more favor-

able than random treatment assignment.

∙ Medium to smaller plots size increase trial perfor-

mance compared with large plot size.

∙ Prior knowledge of spatial structure improves the

performance of the experimental design.

Alternative on-farm experimental designs and analytical

methods aimed to quantify the spatial variability of treat-

ment effects or to estimate site-specific response functions

have been proposed in the literature. These approaches were

generally based on randomized or systematic experimental

designs such as strip-plots (Kyveryga et al., 2009; Scharf

et al., 2005), chessboard (Kindred et al., 2015), or whole-

block (Panten & Bramley, 2012) designs carried out at field

scale. Continuous variability of the field is broken down into

smaller units or polygons matching the spatial resolution at

which management is to be applied, and the response for

each unit is estimated. As only the response to one treat-

ment level can be measured at the same time for each unit,

the treatment effects at untested locations have to be esti-

mated. Some methods based on geostatistical interpolations

were proposed to estimate responses at untested locations

and fitted response functions using the actual response and

those interpolated (Bishop & Lark, 2006; Panten et al., 2010;

Pringle et al., 2004b). To avoid interpolations, Scharf et al.

(2005) randomly assigned treatments to field length strip

plots and then divided these strips into blocks for estimat-

ing the response function using the information of blocks

of data within the strips. In a similar fashion, Kyveryga

et al. (2009) proposed a method to assess the spatial dis-

tribution of the effects within the field using a paired com-

parison between systematically assigned plots. Compared to

the MZ method, these approaches have increased the spatial

resolution of the information gained from on-farm experi-

ments. However, they involve several steps and assumptions,

including interpolation procedures and estimation based on

a few nearby observations. Recently, Trevisan et al. (2020)

have introduced the application of geographically weighted

regression (GWR) to on-farm precision experiment data col-

lected from the Data-Intensive Management Project (DIFM)

(Bullock et al., 2019). The authors showed the potential of

GWR for developing prescription maps based on site-specific

information rather than on subfield areas.
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In a nutshell, GWR is one of the spatially varying coeffi-

cient models proposed for the direct estimation of these site-

specific functions. Unlike other methods that involve several

steps and assumptions, the GWR allows estimating functions

where the parameters of the models vary in space, and they

can be mapped and interpreted as a spatial variable (Fother-

ingham et al., 2002). This method applies a weighted least

squares estimation to neighboring subsamples where weights

are estimated via a distance-decay kernel within a bandwidth.

Although initially designed to deal with the lack of station-

arity issues, this method has been applied for making spa-

tial inferences in several fields beyond geography (Wheeler

& Calder, 2007). As reported by several authors, the inference

about local coefficients is sensitive to the bandwidth selection

and kernel functions which may result in the detection of mis-

leading relationships (Bivand et al., 2013; Páez et al., 2011)

and several methods to calibrate these aspects were reported

(Farber & Páez, 2007).

Despite the potential of GWR for developing site-specific

prescription maps (Rakshit et al., 2020; Trevisan et al., 2020),

the effect of the experimental designs and the underlying spa-

tial structure on the ability of this model to approximate the

true spatial pattern of crop responses is yet to be explored. As

the true underlying spatial structure of the crop response func-

tion is always unknown, we propose an in silico study to assess

the effect of combinations of plot sizes and randomization on

the GWR results assuming several spatial structure scenarios

for those function coefficients. The main goal of this study is

to assess the impact of experimental designs and the under-

lying spatial structure on the ability of GWR models to esti-

mate the spatially variable response functions. Results from

this exercise would help the optimization of OFPE methods

for supporting site-specific decisions and build confidence in

the methods applied for their analysis.

2 MATERIALS AND METHODS

2.1 Hypothetical experimental conditions

A simulation study was conducted to evaluate the effect

of experimental designs on the ability of on-farm precision

experiments to capture the spatial variability of crop response

functions under different spatial variability scenarios. Hypo-

thetical experiments aimed to estimate the yield response of

corn (Zea mays L.) to nitrogen applications on a 432 m width

by 864 m long experimental field (37 ha) were simulated. The

following machinery configurations were assumed to be avail-

able for running the experiment and collecting the data: (a) a

tractor powered with automatic guidance; (b) a 12-row 76 cm

spacing applicator with variable rate technology (VRT); (c)

and a combine harvester equipped with a 12-row header, yield

monitor system, and automatic guidance. Based on combine

specifications, the minimum width of the experimental units

was the combined cut swath, which is equal to 9 m. The

dimension of the field was approximately equivalent to 48 and

96 times the header width, respectively. A total of 4,608 data

points were simulated for each combination of spatial scenario

and experimental design described in the following section.

The extent of the experimental field is comparable with fields

from the DIFM project (Bullock et al., 2019) and provided

the minimum size of the field for a realistic representation of

different spatial patterns and allocation of experimental unit

sizes while keeping the number of data points and computa-

tional time low. In real scenarios, coarser resolutions could be

expected due to wider machinery footprints (header or planter

widths) and the smoothing process along with harvest direc-

tion (Lark et al., 1997; Marchant et al., 2019).

2.2 Experimental designs

The simulated treatments consisted of four nitrogen rates (0,

50, 100, and 150 kg N ha−1) applied during the planting oper-

ation. These treatments were applied at a minimum spatial

resolution of 9 m perpendicular to planting direction due to

the dimensions of the header, which matches the applicator.

The minimum resolution along planting direction was 36 m

for allowing enough time (about 18 s) for the actuators for

changing the rate on-the-go and the delays for the grain thresh-

ing and yield monitor system. As a result, the smallest and

largest experimental unit sizes were about 324 to 1,296 m2.

Six spatial layouts (L1–L6) with a different number and size

of experimental units were applied in a systematic (R0), par-

tially (R1), and completely random (R2) fashion. Designs

with restricted randomization (R1) were obtained by divid-

ing the field in three zones and randomizing treatments within

each zone independently. The combination of plot sizes and

randomization resulted in 18 designs, which are summarized

in Table 1 and displayed in Figure 1b.

In non-spatial experiments, some sort of blocking is desir-

able for controlling nuisance factor that can alter treatment

responses (Piepho et al., 2011). In spatial experiments like

those simulated in this study, the rationale behind the use of

blocks or zones for restricting the randomization, even though

the underlying trend is not evident or unknown, is related to

the need of avoiding spatial clustering of treatment levels and

thus getting a more spatially balanced distribution of treat-

ments.

2.3 Yield data simulation procedure and
model assumptions

Corn yield response to nitrogen rates was simulated assuming

a linear model with spatially variable coefficients within the
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T A B L E 1 Summary of the characteristics of the experimental designs evaluated

Codea Layout Randomization Replications Plot width Plot length Plot aspect ratio EU areab

m m2

L1R0 1 no 288 9 36 4 324

L2R0 2 no 144 9 72 8 648

L3R0 3 no 144 18 36 2 648

L4R0 4 no 72 18 72 4 1,296

L5R0 5 no 96 27 36 1.3 972

L6R0 6 no 48 27 72 2.6 1,944

L1R1 1 partial 288 9 36 4 324

L2R1 2 partial 144 9 72 8 648

L3R1 3 partial 144 18 36 2 648

L4R1 4 partial 72 18 72 4 1,296

L5R1 5 partial 96 27 36 1.3 972

L6R1 6 partial 48 27 72 2.6 1,944

L1R1 1 complete 288 9 36 4 324

L2R1 2 complete 144 9 72 8 648

L3R1 3 complete 144 18 36 2 648

L4R1 4 complete 72 18 72 4 1,296

L5R1 5 complete 96 27 36 1.3 972

L6R1 6 complete 48 27 72 2.6 1,944

a Code = identification code of the experimental design.
b EU area = area in m2 of each experimental unit.

field:

𝑦𝑖
(
𝑠𝑖
)
= β0

(
𝑠𝑖
)
+ β1

(
𝑠𝑖
)
𝑥𝑖 + ε𝑖 (1)

where 𝑦𝑖(𝑠𝑖) is the yield response at the site 𝑠𝑖 = (𝑢𝑖, 𝑣𝑖)
defined by 𝑢𝑖 and 𝑣𝑖 spatial coordinates; β0(𝑠𝑖) and β1(𝑠𝑖) are

the regression coefficients for site 𝑠𝑖; 𝑥𝑖 is the nitrogen rate;

and the error term which is assumed to be independent and

normally distributed with mean 0 and constant variance. Most

of the corn yield response functions to nitrogen applications

reported in bibliography involve some linear and quadratic

or plateau feature. However, the importance of these terms

depends on the range of the rates explored and the variability

of soil and weather conditions. In this study, a linear function

was assumed in order to simplify the yield simulation pro-

cess as implemented by Evans et al. (2020) and Trevisan et al.

(2020).

First, the spatial distribution of each regression coefficients

of Equation 1 was simulated independently by an uncondi-

tional Gaussian geostatistical simulation procedure (Webster

& Oliver, 2007). Five spatial variability scenarios, that is,

random fields, for each regression coefficient, were created

assuming they are a realization of a first-order stationary ran-

dom process with the following general linear model:

β𝑗
(
𝑠𝑖
)
= μ𝑗 + ε

(
𝑠𝑖
)

where β𝑗(𝑠𝑖) is the true value of the j regression coefficient

at location 𝑠𝑖 = (𝑢𝑖, 𝑣𝑖); μ𝑗 is the overall mean value of the j
regression coefficient over the experimental field, and ε(𝑠𝑖)
the random term having a Normal distribution with expecta-

tion equal to 0 and a spatial variance–covariance matrix as a

function of distances. Note that for scenarios with range = 0

(no spatial autocorrelation) the variance–covariance matrix is

not spatial and ε𝑖(𝑠𝑖) simplifies to ε𝑖. The spatial autocorrela-

tion was assumed to be isotropic and depicted by a spherical

covariance model without nugget effect and ranges of 0, 50,

100, 200, and 400 m (Equation 2). Along with the exponential

model, the spherical is one of the models used in literature to

represent both soil and yield properties (Richter et al., 2015;

Thöle et al., 2013; Webster & Oliver, 2007).

𝐶(ℎ) =

{
σ2
𝑠𝑖𝑙𝑙

(
3ℎ
2𝑎 + 1ℎ3

2𝑎3

)
0 ≤ ℎ ≤ 𝑎

0 ℎ > 𝑎

}
(2)

where C(ℎ) is the spatial covariance function between pairs

distanced by h units; a is the range of spatial dependence, σ2sill
is the total variance of the process, assumed to be 30% around

the mean, 5 Mg ha−1 and 0.03Mg kg N−1 for β0(𝑠𝑖) and β1(𝑠𝑖),
respectively.

For each scenario, a single realization of β0(𝑠𝑖) and β1(𝑠𝑖)
were independently drawn, and they were assumed to be
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F I G U R E 1 Description of (a) the spatial variability scenarios (ranges 50 and 100 were omitted due to space restrictions), (b) experimental design

(blocked design R1 was omitted due to space restrictions), and (c) the yield simulation process. The example illustrates the simulation of yields for the

design L6R0 applied to scenario 6 (range 200)

the true regression coefficient map of the spatially variable

function (Figure 1a). Correlations between these maps for sce-

narios with no trend were negligible (Pearson’s correlation

coefficients between −0.16 and 0.07). By combining the

information from these maps, simulations allowed to repre-

sent a wide range of patterns in the linear response. For exam-

ple, locations with low intercepts and slopes could represent

situations where another limiting factor is governing the yield

response, and the application of inputs will not produce an

increase in the yields. In locations where these limiting factors
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F I G U R E 2 Description of the process for the simulation of geographically weighted regression (GWR) coefficient distributions from simulated

yield maps and designs. The example continues the case for design L6R0 applied on scenario 6 (range 200)

are not present, the same initial yield but with higher response

rate could be observed, which is the expected response for

the input application to be warranted. Finally, a high intercept

and low slope could represent situations where the soil pro-

vides enough nutrients to achieve a high base yield without

input addition and the addition of input does not result in an

increased yield.

The random fields used here for geostatistical simulation

aimed to cover a wide range of spatial variability scenarios

observed in the fields, ranging from purely random to well-

structured variation with large-scale patterns. The pure nugget

effect scenario (range = 0 m) represents the situation where

crop response to nitrogen varies within the field in a way that

is not spatially structured so that there is no need for local

coefficients for the regression model. In contrast, in the fifth

scenario (range = 400 m) the variation of the yield response

is assumed to be spatially structured and local coefficients

for the regression model would be warranted. In both cases,

regression coefficients vary around the overall mean value.

Finally, for each scenario, corn yield data were simulated

200 times over the 4,608 grid points by plugging the infor-

mation of the spatial variability of regression coefficients, the

nitrogen rates from the experimental designs and a random

error with mean 0 and variance assumed to be (1.5 Mg ha−1)2

into the model from Equation 1 (Figure 1c). In total, 18,000

yield data set were simulated.

2.4 Data analysis

Each simulated yield data set containing 4,608 data points

(each pixel is 81 m2) was analyzed by fitting the geo-

graphically weighted regression (GWR) (Fotheringham et al.,

2002) model from Equation 1 (Figure 2) but using centered

data (treatments and yield) and omitting the intercept term.

Regression coefficients at each location were estimated using

a weighted least squares estimator based on the information

of the nearby locations:

β̂
(
𝑠𝑖
)
=
(
𝐗𝑇𝐖

(
𝑠𝑖
)
𝐗
)−1𝐖(

𝑠𝑖
)
𝐲 (3)

where y represents the vector of yield response, X a matrix of

predictors, in this case, the treatments levels, β̂(𝑠𝑖) represents

the vector of estimates of β̂1 at location si, and𝐖(𝑠𝑖), is an n by
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n matrix whose off-diagonal elements are zero, and diagonal

elements denote the geographical weighting of each of the n
observed data for point si. Three kernel density functions with

adaptive bandwidth were tested:

exponential kernel𝑤
(
𝑠𝑖, 𝑠𝑗

)
= exp

(
−𝑑

(
𝑠𝑖, 𝑠𝑗

)
𝑏
(
𝑠𝑖
)𝑎𝑑

)
(4)

gaussian kernel𝑤
(
𝑠𝑖, 𝑠𝑗

)
= exp

⎡⎢⎢⎣−12
(
𝑑
(
𝑠𝑖, 𝑠𝑗

)
𝑏
(
𝑠𝑖
)𝑎𝑑

)2⎤⎥⎥⎦ (5)

bisquare kernel𝑤
(
𝑠𝑖, 𝑠𝑗

)
=
⎡⎢⎢⎣1 −

(
𝑑
(
𝑠𝑖, 𝑠𝑗

)
𝑏
(
𝑠𝑖
)𝑎𝑑

)2⎤⎥⎥⎦
if 𝑑

(
𝑠𝑖, 𝑠𝑗

)
< 𝑏 and 0 otherwise (6)

where the 𝑤(𝑠𝑖, 𝑠𝑗) is the weight of the data from location 𝑠𝑖
in relation to 𝑠𝑗 , 𝑑(𝑠𝑖, 𝑠𝑗) is the Euclidean distance between

a location 𝑠𝑖 and 𝑠𝑗 ; and 𝑏(𝑠𝑖)ad is the adaptive bandwidth

parameter for site 𝑠𝑖. Due to the impact of the number of

neighbors on the estimation bias and variance of the esti-

mators, the number of neighbors was selected by the adap-

tive algorithm to be about 3% of total observations, that is,

138 neighbors. Based on plot dimensions and the grid spa-

tial resolution, this amount of neighbors allowed each treat-

ment to be represented within the search radius from the

target point. As a result, 54,000 GWR models were esti-

mated, and the estimated regression coefficients and the local

coefficient of determination (R2) were retained for further

analysis.

When applied to data with predictors far enough from 0, the

GWR, as any linear regression procedure, is known to produce

some degree of correlation between coefficient estimates, that

is, intercept and slopes. As the true coefficient maps used for

simulation yield datasets were assumed to be uncorrelated, fit-

ting the GWR model to the non-centered data would result in

forcing the algorithm to balance error between these two esti-

mates, resulting in underestimation of the agreement between

model estimates and true coefficients.

2.5 Design comparisons

The agreement between the estimated regression coefficients

obtained by GWR model for each realization and true coeffi-

cient used in the simulation procedure was assessed by com-

puting the correlation coefficient (r), the mean absolute error

(MAE), coverage probability (CP) and standard deviation

ratio (SDR):

𝑟 =
σβ̂1(𝑠𝑖)β1(𝑠𝑖)
σβ̂1(𝑠𝑖)σβ1(𝑠𝑖)

(7)

MAE = 1
𝑁

∑|||β̂1 (𝑠𝑖) − β1
(
𝑠𝑖
)||| (8)

CP (𝑑) = 𝑃
[|||β̂1 (𝑠𝑖) − β1

(
𝑠𝑖
)||| ≤ 𝑑

]
(9)

SDR =
σ2
β̂1(𝑠𝑖)

σ2
β1(𝑠𝑖)

(10)

The r indicates the degree of linear association exists

between the GWR estimated and true coefficients. Absolute

values near the unity indicate that there exists a perfect lin-

ear relationship between them but not necessarily implies that

these estimates are accurate. The MAE represents the average

absolute distance between the GWR estimated coefficients

and the true value over the entire field for each realization.

Ideally, this measure should be near 0, but the smaller the

value, the smaller is the bias, and higher is, on average, the

agreement between estimated and true regression coefficients.

Besides, for each realization, CP was estimated by computing

the proportion of sites where the estimates of the regression

coefficients were equal or less than ±15% of the true value.

In other words, this measure represents the proportion of the

field where the differences between model estimates, and true

values are lesser than a predefined error margin. Finally, the

SDR was computed to assess if the variability of the GWR

estimates under- or over-estimate of the spatial variability of

the true coefficients.

As a result, for each combination of spatial structure

(ranges) and design distribution of 200 values of each mea-

sure was computed (Figure 2). The distribution of each mea-

sure was summarized by descriptive statistics and correlation.

The effects of experimental designs and the underlying spatial

variability scenarios on the ability of the model to capture the

spatial variability of the true response were assessed by fit-

ting a linear model using the measure as a response variable.

The importance of factors on these measures was assessed by

computing main and total sensitivity indices from ANOVA

Sum of Squares (SS) of a 5 (range) x 18 (design) full factorial

model (Wallach et al., 2006). For a given factor, the main sen-

sitivity index relates to the SS associated with its main effect

on the total SS.
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In contrast, the total sensitivity index of a given factor

accounts for the SS associated with the main effect of that fac-

tor and also any interaction involving it. Thus the higher the

main or total sensitivity index, the higher the direct or direct

and indirect importance of the factor on the results. The SS

associated with design factors were further partitioned into

specific contrast for assessing the effect of the randomization

and plot dimensions.

The comparisons between designs at each spatial structure

scenario were summarized through principal component anal-

ysis (PCA). The distribution of measures for each combina-

tion of designs and spatial structure scenarios was aggregated

by their means, and principal components were extracted from

the correlation matrix. Finally, the scores for designs with dif-

ferent plot width and length were related to the size of the

underlying spatial structure.

2.6 Software

Data manipulation, visualization, and modeling were per-

formed using the statistical language R (R Core Team,

2020) and functions from packages gstat (Pebesma, 2004),

dplyr (Wickham et al., 2017), ggplot2 (Wickham, 2009), and

GWmodel (Gollini et al., 2015; Lu et al., 2014).

3 RESULTS AND DISCUSSION

The average local coefficients of determination (R2) ranged

from .27 to .49. Regardless the kernel chosen or the

design simulated, the moderate to a low amount of variance

explained by these models is related to the amount of varia-

tion left on the residuals. In this case, the simulations assumed

an error (residual) variability about 1.5 Mg ha−1, which rep-

resents 30% of the mean yield without N addition, that is, the

intercept. Simulations using a lower amount of residual vari-

ability could result in higher R2 values. However, this assump-

tion was meant for testing the designs under high variability

scenarios, which could cover real on-farm experiments. As

the regression coefficients estimated by GWR depend on the

weighting kernel function (Fotheringham et al., 2002; Páez

et al., 2011), the analysis was performed on the GWR mod-

els with bisquare kernel provided they maximized the local

R2 with values between .31 to .49 among designs and spatial

structure scenarios.

The overall distributions of the measures of the agree-

ment are summarized in Table 2. The correlation coefficients

between GWR estimates and true values differed from the rest

of the measures. The lowest values for CP, r, and SDR were

associated with scenarios with no spatial structure, no matter

the design. In contrast, the highest values for CP and r were

obtained mostly under combinations of highly structured spa-

T A B L E 2 Summary statistics of the measures of agreement

computed between the true and GWR estimates of the slope of the

response function from Equation 1]

Measure
of agreement Min. Mean Median Max.

CV
(%)

r 0 0.42 0.44 0.88 60

MAE 0.0028 0.0079 0.0081 0.0129 25

SDR 0.434 1.13 1.13 2.51 38

CP 0.23 0.39 0.35 0.78 0.27

Note. Min.=minimum; Max.=maximum; CV= coefficient of variation; r= coef-

ficient of correlation; MAE = mean absolute error; SDR = standard deviation

ratio; CP = coverage probability;

T A B L E 3 Correlation matrix between measures of agreement

computed between the true and GWR estimates of the slope of the

response function

r MAE SDR
MAE −0.58

SDR 0.39 0.43

CP 0.71 0.94 0.21

Note. r = coefficient of correlation; MAE = mean absolute error; SDR = standard

deviation ratio; CP = coverage probability.

tial variability scenarios and systematic designs with small

plots sizes. The SDR rates larger than 1 were mostly found

in designs with large plots. Finally, the MAE showed a simi-

lar pattern of CP but the opposite.

The overall ability of the GWR model to capture the under-

lying spatial pattern of the response function is strongly cor-

related to the distance between the estimated coefficients and

the true ones, accounted by MAE and CP (Table 3). Thus,

as the correlation between the true and estimated coefficients

increases, and the average error decreases, the proportion of

the experimental area with estimates within 15% about the

true values increases. In contrast, the SDR showed a low cor-

relation with the rest of the measures indicating that it carries

additional information.

3.1 Impact of spatial structure and design
on results

Sensitivity analysis from SS provided information about the

relative importance of the design and spatial structure on

GWR results. The importance of these factors varied regard-

ing the measure considered, although some similarities were

found (Figure 3). In all cases, the small difference between

the main and total sensitivity index reflects the amount of SS

accounted for by the interaction.

The effect of the spatial structure of the true parameter

accounted for 76% of the variability of the correlation (r)
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F I G U R E 3 Effect of spatial structure (range) and experimental designs (design) on the amount of variability observed in the distribution of

correlation coefficients (r), mean absolute error (MAE), standard deviation ratio (SDR), and coverage probability (CP)

between the estimates and the true values. Similarly, 60%

of the variability of the ratios between the spatial variabil-

ity of the true coefficients and the estimated by GWR was

determined by the underlying spatial structure of the regres-

sion coefficient, but also 28% of such variation was accounted

for by design. In contrast, the MAE and CP, which both mea-

sure the degree of bias of the estimates, were more related to

the design. The main effect of the design represented 60 and

50% of the total variability, respectively. The partition of the

SS associated with the design revealed that the plot width and

randomization were the most critical factors impacting field

design performance.

According to this analysis, the ability of the GWR model

to capture the variability of the response function, that is,

the amount and the spatial pattern, was mainly affected by

the spatial structure of the underlying process. However, the

overall accuracy of the coefficients estimated by the GWR

model was affected mainly by the degree of bias introduced

by design. Part of this behavior could be related to the fact

that regression coefficients on Equation 1 are assumed to be

deterministic functions of coordinates within the GWR esti-

mation algorithm (Fotheringham et al., 2002). As the pat-

terns of spatial variability increase in ranges, the lack of

stationarity of the regression coefficients increases, and the

GWR allowed capturing these smoother patterns. Conversely,

the coefficients from Equation 1 are regarded as invariant

within the neighborhood (Fotheringham et al., 2002); thus,

the longer the range, the less spatial variability within the

neighborhood, resulting in the estimated coefficients closer

to the true ones. In a recent work, Rakshit et al. (2020)

suggested that the upper bound for bandwidth selection for

on-farm experiment designs should be based on maximum

distances between all pairwise distances nearest treatments.

Thus, the effect of the design through the randomization

and plot width could be attributed to the distribution of

the treatment plots within the search radius imposed by the

bandwidth.

3.2 Differences between designs by spatial
structure scenarios

According to the PCA, 97% of the variability of the measures

of agreement could be summarized into two principal compo-

nents (Figure 4). The first PC accounted for 63% of the total

variation and summarized the information related to the bias

(MAE and CP), and the correlation between estimates and

true values (Table 4). In contrast, the second PC represented

mostly the variation on the SDR. According to the loading

sign, positive scores on the PC1 are associated with correla-

tion and bias higher and lower than the mean, respectively. In

contrast, negative scores on the PC2 are related to the overes-

timation of the spatial variability of the regression coefficient.

The distribution of the observations within these two PC

space showed some patterns related to the interaction between

the designs (shape and colors), and the spatial structure (sym-

bol size). As expected, under the no spatial structure scenario,

the designs performed similarly with scores between −1.03
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F I G U R E 4 Effect of spatial structure and experimental designs on the correlation between estimated and true regression coefficients

T A B L E 4 Loadings and correlation coefficients in parenthesis

between measures of agreement and principal components (PC)

Measure of agreement PC1 PC2
r 0.48 (0.77) −0.52 (−0.60)

MAE −0.60 (−0.96) −0.21 (−0.24)

SDR −0.13 (−0.21) −0.83 (−0.97)

CP 0.62 (0.98) 0.03 (0.03)

Note. r = coefficient of correlation; MAE = mean absolute error; SDR = standard

deviation ratio; CP = coverage probability.

and −0.73 on the PC1 and 1.73 to 1.97 on PC2, represent-

ing the lowest bound of the overall performance. As the spa-

tial structure increases, systematic designs with small plots

(L1, L2, L3, and L4) increased their scores on PC1, meaning

higher values of correlation, CP, and lower MAE. However,

at the same time, the small displacement along the direction

associated with SDR means some improvement in the amount

of variability captured by the GWR estimates. In contrast,

all randomized designs, both fully and partially randomized,

along with those systematic with large plot sizes tended to

have low scores on PC1 and more considerable variation on

PC2 as spatial structure increases. In terms of performance,

although the spatial structure increases, these designs result in

lower values of correlation, CP and higher MAE, and, more

importantly, a higher degree of overestimation of the spatial

variability of the regression coefficient.

3.3 Relating experimental units dimensions
and spatial structure

The effect of the experimental designs on the performance of

GWR procedure to capture the underlying spatial pattern of

the regression coefficient is shown in Figure 5. As the spatial

structure increases from pure nugget to the maximum range

simulated, the amount of variability captured by the model,

and the overall accuracy of the estimates increases. For sys-

tematic designs with narrow plots, no matter the plot width,

the scores on PC1 increase rapidly, turning into positive val-

ues for scenarios with spatial structure higher than 50 m. This

gain on overall performance means that these designs can cap-

ture small-scale structures. A similar trend, although more

smoothed, is observed for the PC2 with scores approaching

to 1 beyond the range 100 m. Thus, when the spatial struc-

ture is higher than 100 m, the amount of spatial variabil-

ity of the GWR estimates would be closer to the true spa-

tial variability. In contrast, the impact of spatial structure on

the performance of systematic designs with wider and longer

plots is less evident. The measures of agreement related to

PC1 increase beyond a spatial structure of 100 m but reach

values lower than the mean (e.g., negative scores). The pat-

tern observed on PC2 indicates that these designs consistently

overestimate the true spatial variability of the regression coef-

ficient as they resulted in negative scores on PC2. An interim

situation is observed for wider but narrow plots.
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F I G U R E 5 Effect of contrasting experimental designs on the performance of the geographically weighted regression (GWR) procedure to

capture the underlying spatial pattern of the regression coefficient

When considering randomized designs, only the designs

with narrow plots resulted in performance scores above

the mean for r, MAE and CP, and slightly over unity for

SDR. Even though, some improvement can be observed for

shorter plots. In contrast, as the spatial structure increases,

the amount of spatial variability observed in the GWR esti-

mates increases up to a factor of 2 for designs with wider and

longer plots.

As any simulation study, the assumptions made for the sim-

ulations, especially the hypothetical response and the amount

of variability considered covered in the simulated scenar-

ios, may condition or limit the generalization of their results.

However, this novel approach combining statistical simula-

tion and multivariate techniques provided useful insights for

guiding the design of on-farm experiment. First, as showed in

Figure 3, the underlying spatial structure plays a significant

role in the ability of the GWR procedure to accurately estimate

the spatial variability of the regression coefficients. In gen-

eral, as the range of spatial structure increases, that is, more

significant and smoother patterns, the agreement between

GWR estimates tends to increase. Thus, confidence in the

prescription maps based on these coefficients is conditioned

by the degree on which the factors affecting crop response are

spatially structured. Our results verified the rationale behind

the opportunity index for site-specific management proposed

by Pringle et al. (2003). Although this index is based on the

amount and spatial structure of yield variability from uniform

trials, our results suggest the need for a strong spatial structure

for developing reliable prescriptions.

Second, the experimental design, through the plot dimen-

sions and randomization, determines the spatial distribution

of the treatment within the field, which affects the ability of

the GWR procedure to accurately estimate the spatial vari-

ability of the regression coefficients. In this study we tested

three types of randomizations: systematic, partially or blocked

randomization, and full randomization. According to van Es,

Gomes, Sellmann, and van Es (2007), experimental designs

with some sort of blocking, that is, randomized complete

block designs or Latin-square designs, are the most popular

in field experiments. When applied properly, in non-spatial

experiments these designs allow experimenters to control nui-

sance factors that can influence treatment responses but are

not of interest (Piepho et al., 2011). In the context of spatial

experiments, even though the underlying trend is not evident

or unknown, some restrictions on the randomization are desir-

able in order to avoid spatial clustering of treatment levels and

thus getting a more spatially balanced distribution of treat-

ments (van Es et al., 2007). Our results showed that systematic

designs provided better results for the estimation of the spa-

tially variable regression coefficients. Among them, narrow

plot designs produced better results in terms of correlation and

MEA, although SDR< 1, resulting in some degree of underes-

timation. However, the results depend on the suitability of the

designs to match the underlying spatial structure. Systematic
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F I G U R E 6 Mean and coefficient of variation of the principal component scores across the spatial structure simulated for each experimental

design as a combination of spatial layouts and randomization

designs with large strip plots are popular in on-farm exper-

iments (Griffin et al., 2004; Marchant et al., 2019; Whelan

et al., 2012). These results confirm that systematic designs are

more convenient for estimating local predictions of response

curves, as suggested by other authors (Piepho et al., 2011;

Pringle et al., 2004a).

Third, if we were able to have some idea of the spatial

structure beforehand, the information about the interaction

between designs and spatial structure showed in Figures 4

and 5 would be useful for designing the experiments. For

example, results from DIFM (Trevisan et al., 2020) showed

that the spatial structure for the optimal nitrogen rate would

be around 200 m. In this case, using the results from PCA

analysis, the best results in terms of measures of agreement

here considered would be achieved using systematic designs

L1R0 and L2R0. However, in a real setting, the scale of the

underlying spatial structure is unknown. In such scenarios, the

recommendation on the experimental design could be based

on the results over a wide range of spatial structure scenarios.

A summary of the PCA scores across the simulated spatial

variability scenarios excluding the pure nugget is shown in

(Figure 6). The latter scenario has been excluded as it would

be an extreme case where GWR procedure does not make

sense to be applied. The distribution of the points from

Figure 6 shows that although systematic designs with nar-

row plots (L1R0, L2R0) produced the higher mean values and

lower CV on PC1 scores, which is associated with high val-

ues of correlation and CP and low values of MAE, the esti-

mated regression coefficients produced by these designs are

on average less variable than those produced by designs with

plots two times wider (L3R0 and L4R0) or randomized design

with smallest plots (L1R1).

Four, our results suggested that the approximation of the

spatial structure of a response before running the experiment

in the whole field is a key aspect of on-farm experiments opti-

mization. This information could be obtained either by using

ancillary data correlated with these responses, for example,

soil or landscape attributes strongly related to factors control-

ling crop response or using a two-stage approach. In the lat-

ter case, the first stage would consist of running a pilot trial

using approaches similar to those proposed by Whelan et al.

(2012) where treatments are assigned to a reduced number

of plots arranged in blocks and distributed within the field.

Then, fit the response function for each block (Kyveryga et al.,

2009; Scharf et al., 2005) and analyze the spatial structure of

these responses (Panten et al., 2010; Pringle et al., 2004b).

Finally, the selection of the plot design could be based on

the simulations performed for scenarios with similar spatial

structures. Nevertheless, this approach would need to assume

some specific form for the response function, that is, lin-

eal, quadratic, etc., which must be regarded fixed in time.

If the particular case of nitrogen fertilizer, most of the vari-

ation results from the interaction of site-specific conditions

and weather. Thus, the underlying spatial pattern of the coef-

ficients might not be the same across seasons. One way to

address this issue would be to run the experiments over mul-

tiple years or instead regarding fixed this pattern incorporate

this source of randomness into the yield data generation pro-

cess by allowing the coefficients to vary not only spatially but

also temporally.
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Five, although the measures of agreement used in this

work measure different aspects of the quality of GWR esti-

mates, the PCA analysis showed a certain level of redun-

dancy between them. The spatial structure and the experimen-

tal design affect mostly the amount of bias and the degree of

correlation between estimates and true coefficients, but also

the degree of under- or over-estimation of the spatial vari-

ability of the true coefficients. Prescription maps based on

a biased crop response function could result in application

rates that are below or above the optimal rate. In contrast, as

the decision about the need for site-specific rates is based on

the spatial variability of the estimated coefficients, departures

from the true spatial variability of the coefficients may result

in recommendations of uniform rates where variable rates are

warranted. In that case, a low correlation between GWR esti-

mates and true coefficients would result in the application of

inputs based on misleading spatial patterns.

4 CONCLUSION

On-farm experiments are valuable sources of information

to help farmers in making data-driven decisions. The abil-

ity of the GWR model to capture the true spatial vari-

ability of the response function in the context of OFPE

opens new opportunities to measure site-specific responses

in farmer’s fields and strengthen the knowledge on the

impact of precision agriculture practices. In order to conduct

more informative experiments, multiple field chessboard trial

designs were compared in a wide range of spatial variabil-

ity scenarios using a simulation approach based on princi-

ples of spatial field theory and assuming a simple response

function.

Results indicated that the ability of GWR and OFPE tri-

als of detecting linear site-specific responses is more related

to the degree of spatial variability of those coefficients than

the spatial arrangement of the treatments. However, experi-

mental designs can have a significant impact on the quality

of the results, and some differences related to the plot width

were observed in favor of smaller plot sizes. Besides designs,

systematic treatment assignment outperformed trial design by

assigning treatments randomly. In a real farming scenario, the

underlying response function and its true spatial pattern is

often unknown ex-ante. However, by approximating the spa-

tial structure of the response based on ancillary information or

a two-stage approach, recommendations about designs could

be developed.

Finally, our methodology provides a way for testing newer

trial designs in new scenarios. Additional simulation studies

should be conducted in order to assess the effect of other popu-

lar designs applied in on-farm experiments, for example, strip

plots, or for experiments with simpler treatment structures,

such as head-to-head comparisons. These results would help

farmers and practitioners by giving insights about the impact

of the trial designs they are employing to conduct their on-

farm experiments.
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