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ABSTRACT
Southern green stink bugs (Nezara viridula L.) are one of the major pests in many
soybean producing areas. They cause a decrease in yield and affect seed quality by
reducing viability and vigor. Alterations have been reported in the oxidative response
and in the secondary metabolites in different plant species due to insect damage.
However, there is little information available on soybean-stink bug interactions.
In this study we compare the response of undamaged and damaged seeds by Nezara
viridula in two soybean cultivars, IAC-100 (resistant) and Davis (susceptible), grown
under greenhouse conditions. Pod hardness, H2O2 generation, enzyme activities in
guaiacol peroxidase (GPOX), catalase (CAT) and superoxide dismutase (SOD) as
well as lipoxygenase expression and isoflavonoid production were quantified.
Our results showed a greater resistance of IAC-100 to pod penetration, a decrease in
peroxide content after stink bug attack, and higher GPOX, CAT and SOD activities in
seeds due to the genotype and to the genotype-interaction with the herbivory
treatment. Induction of LOX expression in both cultivars and higher production of
isoflavonoids in IAC-100 were also detected. It was then concluded that the herbivory
stink bug induces pathways related to oxidative stress and to the secondary
metabolites in developing seeds of soybean and that differences between cultivars
hold promise for a plant breeding program.
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INTRODUCTION
The stink bug complex is one of the most detrimental pests that affects soybean
(Glycine max L.) yields in many countries. In South America, the main species that impair
soybean yields are Nezara viridula, Piezodorus guildinii and Euschistus heros. They
adversely affect seed vigor and may even kill the embryo and stop germination. Brazil and
Argentina are two of the most important producers of this legume and damage caused
by the mentioned species can result in significant economic losses (Schaefer & Panizzi,
2000). Soybean crops destined for seed production are less tolerant to stink bug damage
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than soybean crops used for animal feed (Jensen & Newsom, 1972). While stink bugs can
be controlled by spraying pesticides, there are environmental and economic issues
concerning the frequent use of these products. Biological control can be mentioned as an
alternative method to fight against this complex of insects. For example, the well-studied
egg-parasitoid Trissolcus basalis (Wollaston) has been successfully used by farmers in
Brazil (Corrêa-Ferreira & Moscardi, 1996). However, soybean host plant resistance is an
interesting strategy for managing plant breeding programs (Boerma & Walker, 2005),
and it is necessary to first understand the mechanisms related to stink bug resistance in
soybean breeding lines.

The soybean cultivar IAC-100 has been defined as resistant against stink bug attack
(Campos et al., 2010; McPherson, Buss & Roberts, 2007; Piubelli et al., 2003a; De Souza
et al., 2014; Michereff et al., 2011) and is used in breeding programs as a source of
resistance (McPherson, Buss & Roberts, 2007). This variety was developed by the
Agronomic Institute of Campinas in Sao Paulo (Brazil) by crossing breeding lines
IAC 78-2318 and IAC-12 (Priolli et al., 2002). Studies on this genotype showed that stink
bug attack caused less seed damage and less seed weight loss than other genotypes
(Campos et al., 2010). Previous studies found lower adult fresh weight of Nezara viridula
when fed on “IAC-100” and less lipids in females than in those fed on the other
genotypes (Piubelli et al., 2003b). However, the mechanisms through which soybean
reacts to stink bug attack are still unknown.

Plants respond to herbivore injury through several direct and indirect morphological,
biochemical and molecular mechanisms that help them avoid herbivore attack or affect its
performance (Fürstenberg-Hägg, Zagrobelny & Bak, 2013). Direct defense mechanisms
affect insect performance and feeding behavior, while indirect defense mechanisms can
attract the natural enemies of the herbivores and thus reduce plant loss (War et al., 2012;
Freeman & Beattie, 2008). Insect herbivory induces early responses such us the oxidative
burst (production of reactive oxygen species-ROS), the expression of defense-related
genes, and late responses such as callose deposition and accumulation of proteinase
inhibitors (Savatin et al., 2014). Infestation of Vicia faba by N. viridula significantly
stimulates the production of H2O2 (Ederli et al., 2017). Moreover, in poplar the
concentrations of H2O2 and malondialdehyde and the activities of ROS-scavenging
enzymes, such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD),
were enhanced by herbivore wounding, suggesting that they are associated with insect
resistance. The above-mentioned enzymes are related to plant signaling, synthesis of
defense compounds, and to oxidative stress tolerance (Bi & Felton, 1995; Zhang, Hua &
Zhang, 2008; Mai et al., 2013; Zebelo & Maffei, 2014).

After insect attack the activation of defense genes that stimulate the production of the
antiherbivory compounds is induced due to internal signals such as calcium ion flow, a
phosphorylation cascade and responses mediated by hormones: jasmonic acid (JA)
and ethylene (ET) (Wasternack, 2007; Howe & Jander, 2008; Browse, 2009). JA and its
methyl ester, methyl jasmonate (MJ), participate in the activation of plant defense
mechanisms as signaling compounds in processes related to production of various
secondary metabolites (i.e., terpenoids, phenylpropanoids and alkaloids) (Wang et al.,
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2015;Misra et al., 2014). In the case of soybean, isoflavones are the main chemical defense
compounds against insects because they affect the performance and survival of the
herbivores (Piubelli et al., 2003a). It is well known that MJ and JA induce the accumulation
of proteinase inhibitors as direct defense mechanisms against herbivorous insects (Farmer
& Ryan, 1990; Farmer, Johnson & Ryan, 1992). Studies on soybean analyzed the effects
of jasmonic acid induction and showed that the soybean looper (Chrysodeixis includens
Walker) selects plant leaves that have not been induced by JA Accamando & Cronin
(2012). In addition, soybean crops grown under conditions of high concentrations of
ambient CO2 were unable to express genes related to the JA synthesis, which made them
highly susceptible to insect attack (Zavala et al., 2008). The synthesis of jasmonates and
many other oxilipins is initiated by lipoxygenases (LOXs), which catalyze dioxygenation
of polyunsaturated fatty acids (reviewed by Blée (2002), Feussner & Wasternack (2002),
Howe & Schilmiller (2002) and Wasternack (2007)). LOX activity was higher in soybean
plants that were less vulnerable to the attack of A. gemmatalis when compared to
controls (Fortunato et al., 2007). Since three lipoxygenases, Lox1, Lox2 and Lox3 were
detected in soybean seeds (Axelrod, Cheesbrough & Laakso, 1981), it is possible that seed
lipoxygenases regulate defenses against stink bug attack. As a first step to develop a resistant
cultivar, it is necessary to identify the sources of resistance for any breeding program
(De Morais & Pinheiro, 2012). Therefore, it is important to determine the different
characteristics of the diverse soybean cultivars as regards plant defense against insect attack.

The aim of this study is to identify and quantify physical and biochemical soybean
defense mechanisms against the southern green stink bug, Nezara viridula attack.
Our hypothesis is that herbivory by stink bugs lead to biochemical changes and that there
are differences between cultivars at both biochemical and physical level. In this study we
have compared soybean seed response to stink bug damage of two cultivars, IAC-100
(resistant) and Davis (susceptible; Orr, Boethel & Jones, 1985; Kester, Smith & Gilman,
1984). Our results show that there are differences between genotypes as regards the
oxidative stress response and isoflavonoid production after to stink bugs attack. A better
understanding of the resistance pathways can help find ways to improve varieties.

MATERIALS AND METHODS
Insect and plant material
In order to determine soybean resistance to stink bug damage (Nezara viridula L.) in
developing seeds, two soybean (Glycine max L.) cultivars, IAC-100 and Davis, were grown
under greenhouse conditions and stink bug adults were placed and allowed to feed on
pods. Plants were grown with 16:8 L:D light regime at 26 ± 3 �C, in pots with 3:1:1:1 soil:
peat:sand:perlite mixture. The colony of stink bugs consisted of field-collected individuals
from the city of Chacabuco (34�38′00″S 60�28′00″O) in the province of Buenos Aires
(Argentina). The insects were reared at our laboratory (School of Agronomy, University of
Buenos Aires, Argentina) on a diet based on hydrated soybean seeds (cv. Williams) and
peeled sunflower seeds, and were then provided water with ascorbic acid (0.5 w/v%)
(Giacometti et al., 2016).
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Experimental design
Four experiments were carried out under the same greenhouse conditions in a completely
randomized design. In the first experiment, seventeen replications of each cultivar were
used, pod hardness was determined by collecting pods at the R6 soybean development
stage (Fehr et al., 1971) and by using a texturometer. In order to determine oxidative stress
response of developing seeds to stink bug damage in the second experiment, a single
adult stink bug was bagged in on one soybean pod of plants (n = 5) at the R6 development
stage (Fehr et al., 1971). Pods of control plants were covered with tulle bags and collected
72 h after stink bugs started feeding. Soon after, they were fast frozen in liquid nitrogen
and stored at −80 �C until analysis. In addition, attacked and unattacked pods (one per
plant) were collected for H2O2 detection in developing seeds. Five replications of each
cultivar were used for stink bug infestation with an equal number of control plants. In the
third experiment undamaged and damaged seeds by stink bugs were collected to determine
isoflavonoid accumulation after 72-h herbivory. Finally, a fourth experiment was
performed to determine the LOX expression level in damaged and undamaged seeds, and
pods were collected 24-h after herbivory and were fast frozen in liquid nitrogen.

Hardness determination on pods
Hardness, the peak force required to penetrate a soybean pod, was measured with an
INSTRON 4442 tensile tester calibrated to penetrate 12 mm at a rate of 2.0 mm sec−1 with
a needle. The tests were performed on both soybean cultivars at the R6 phenological
stage and the needle was inserted in pods at the second seed position. Results were
expressed as gram-force per square centimeter (gf cm−2) and represented the maximum
force required to penetrate a pod with the tip needle in order to simulate the situation in
which the sting bugs insert the stylus (De Santana Souza et al., 2013).

Oxidative stress response
Extracts for determination of catalase (CAT), superoxide dismutase (SOD) and Guaiacol
peroxidase (GPOX) activities were prepared from 0.3 g of soybean seeds homogenized
under ice-cold conditions in 3 mL of extraction buffer, containing 50 mM phosphate
buffer (pH 7.4), 1 m MEDTA, 1 g PVP and 0.5% (v/v) Triton X-100 at 4 �C.
The homogenates were centrifuged at 10,000×g for 20 minutes and the supernatant
fraction was used for the assays. Total protein content was determined by following the
Bradford method for protein quantification (Bradford, 1976).

CAT activity was determined according to a modified protocol of Chance, Sies & Boveris
(1979). The reaction was conducted in a quartz cuvette by measuring the decrease in
absorption at 240 nm in a reaction medium containing 150 mL of enzyme extract, 50 mM
potassium phosphate buffer (pH 7.2) and 2 mM H2O2 for 2 min. CAT activity was
determined using the molar absorptivity of H2O2 at 240 nm and expressed as mmoles mg
protein−1 min−1.

SOD activity was assayed by the inhibition of the photochemical reduction of NBT
(Becana et al., 1986). The reaction mixture consisted of 50, 100 and 200 mL of enzyme
extract and 3.5 mL O2•− generating solution which contained 14.3 mM methionine,
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82.5 mM NBT and 2.2 mM riboflavin. Extracts were brought to a final volume of 0.3 mL
with 50 mM K-phosphate (pH 7.8) and 0.1 mM Na2EDTA.

Sample tubes were shaken and placed in front of fluorescent lamps during 10 min.
The reduction in NBT was followed by reading absorbance at 560 nm. Blanks and controls
were run in the same way but without illumination and enzyme, respectively. One unit of
SOD was defined as the amount of enzyme which produced a 50% inhibition of NBT
reduction under the assay conditions.

GPOX activity was determined according to the protocol devised by Shannon, Kay &
Lew (1966) which consists in measuring the increase in absorption at 470 nm due to the
formation of tetraguaiacol at 30 �C in a reaction extract, 50 mM buffer K-phosphate
50 mM, pH 7, 0.1 mM EDTA, 10 mM guaiacol and 10 mM H2O2. One unit of POD forms
1 mmol of guaiacol oxidized per min under assay conditions.

Detection of H2O2

To visually analyze H2O2 generation, stink bug damaged seeds and their respective
controls were excised and immersed in a 1% solution of 3,3-Diaminobenzidine (DAB) for
24 h under light at 25 �C (Zilli et al., 2008). DAB generates a reddish-brown compound
that could be detected at the site of H2O2 formation in the presence of endogenous
peroxidase activity. After staining, formation of brown precipitates was documented by
photography.

Lipoxygenase expression
The expression level of Lipoxygenase 1 (LOX1) and Lipoxygenase 2 (LOX2) genes in
soybean seeds was determined. Briefly, total RNA was isolated using the RNeasy Plant
Mini kit (QIAGEN Inc., Valencia, CA, USA) according to the manufacturer’s protocol.
RNA concentration was determined with a fluorometer QubitTM (Invitrogen, Carlsbad,
CA, USA), and quality and quantity were assessed spectrophotometrically before the
cDNA was synthesized using the Thermo Scientific RevertAid Reverse Transcriptase in a
Bio-Rad My CyclerTM Termal Cycler.

An ABI 7500 Fast Real-Time PCR system was used to perform the qRT-PCR (Applied
Biosystems, Foster City, CA, USA) with the SYBR Green Real-time Master Mix. The LOX1
and LOX2 primer sequences in this study are detailed in Table 1. The housekeeping

Table 1 LOX1, LOX2 and ELF1b primer sequences.

LOX1 Forward: 5′ CTGGTGTAAATCCCTGCGTAA 3′ Chen et al. (2012)

Reverse: 5′ TACCAAGTGCCTCGTCCATT 3′
LOX2 Forward: 5′ AGATGGTTGCGGGTGTAAAT 3′ Chen et al. (2012)

Reverse: 5′ GGGCATCTGCTGTTATCTTAC 3′
ELF1b Forward: 5′-GTTGAAAAGCCAGGGGACA-3′ Jian et al. (2008)

Reverse: 5′-TCTTACCCCTTGAGCGTGG-3′
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soybean elongation factor (ELF1b) was used as a reference gene for relative quantification
and the target expression relative to the housekeeping was used for ANOVA.

Isoflavonoid determination
Isoflavonoid accumulation was determined after 72 h of herbivory treatment in seeds at R6
according to Fehr et al. (1971), the lipid phase of seeds was removed with cyclohexane
(Zavala et al., 2015). A total of 0.2 g of pulverized seeds were placed in a 50 ml tube and
mixed with 10 mL of cyclohexane and incubated for 6 h. Then, tubes were centrifuged
at 1,500 rpm for 10 min. Supernatant was discarded and the pellet was used for the
extraction step. Isoflavonoids were extracted with methanol plus rutin that was used as an
extraction internal control (0.1 g/5 ml MeOH). A total of 10 mL of methanol were added to
50 mL tubes and incubated for 6 h at room temperature. Then tubes were centrifuged at
1,500 rpm for 10 min. Supernatant was saved. The solvent was then evaporated at 40 �C
and samples were re-dissolved with 500 µL of MeOH. Samples were purified with a
C18 Silica Cartridge (Agilent Technologies, Palo Alto, Santa Clara, CA, USA) using
different mixtures of MeOH–H2O. Aliquots of 5 mL were subjected to high-performance
liquid chromatography (HPLC; Agilent 1100 A series, Waldbronn, Germany) using a
reverse-phase octadesyl column (Eclipse XDB-C18 4.6 × 150 mm, 5 µm). Isoflavonoids
were eluted using a mobile phase gradient of 15–60% acetonitrile in 0.1% acetic acid for
60 min at a flow rate of 1 mL min−1. Compounds were measured with the detector set
at λ 270 nm. Retention times and quantitative data for daidzin, daidzein, genistin and
genistein were obtained by comparison to known standards (all from Sigma–Aldrich,
St. Louis, MO, USA). External standard curves were performed for isoflavonoid
quantification.

Statistical analysis
The experiments were set up as a completely randomized design with factorial treatments.
One factor was the genotype (IAC-100 and Davis) and the second was insect damage
(control and treated). Data were analyzed with the Infostat v. 2011 statistical package
(Di Rienzo et al., 2011). Hardness analysis of pods, and SOD, CAT and GPOX activities as
well as seed isoflavonoid contents in each experiment were analyzed using analysis of
variance (ANOVA). Data on isoflavonoid content were transformed as needed to meet the
assumptions of ANOVA by square root transformation. We applied the Tukey pairwise
multiple comparisons procedure for studying GENOTYPE and TREATMENT effects.

Hierarchical clustering of oxidative stress enzymes was performed with the same data
used for ANOVA using Euclidean distances in Infostat.

RESULTS
Damage and hardness assessment of pods
Oxidative damage caused by stink bugs was observed by visual analyses of H2O2

generation. Davis seeds affected by Nezara viridula exhibited highly enhanced brownish
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staining compared to the IAC-100 genotype (Fig. 1). Textural analysis of pods showed
that IAC-100 has greater resistance to penetration than Davis (p < 0.05; Fig. 2). This can be
a physical barrier to the insect’s stylet penetration.

Figure 1 H2O2 generation in sites damaged by stink bug. Brown color shows a more affected con-
dition. (A) Cultivar Davis with control treatment. (B) Cultivar IAC-100 with control treatment.
(C) Cultivar Davis with herbivory treatment. (D) Cultivar IAC-100 with herbivory treatment. Images
were acquired with a digital camera Nikon Coolpix L110. Full-size DOI: 10.7717/peerj.9956/fig-1

Figure 2 Mean hardness of soybean pods in R6. Means values (bars) and SEM (whiskers) are shown.
Different letters are significantly different (p < 0.05, n = 17). Data source in Supplemental Information.

Full-size DOI: 10.7717/peerj.9956/fig-2
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Stress metabolism
According to our results, the cluster analysis of oxidative stress enzyme activities (CAT,
SOD, GPOX) that was carried out using the statistical package Infostat v. 2011 (Di Rienzo
et al., 2011) showed two main clusters that grouped the genotypes with the treatments.
Figure 3A shows one cluster containing IAC-100 treated with stink bugs, and the second
cluster containing IAC-100 control, Davis treated and Davis control. When exposed to
insect treatment, the cluster distribution suggests a differential induction of enzyme
activities between the resistant and susceptible genotypes. In addition, there is no
Genotype x Treatment interaction in CAT activity and the differences are due to Genotype
and Treatment (p < 0.05; Fig. 3B). Although the CAT enzyme is induced in both genotypes,

Figure 3 Oxidative stress analysis in seeds of different soybean genotypes damaged by Nezara
viridula and their respective controls without herbivory. (A) Cluster analysis of oxidative stress
enzymes. (B) Catalase activity. (C) Superoxide dismutase activity. (D) Guaiacol peroxidase activity.
Means values (dots and squares) and SEM (whiskers) are shown. Different letters are significantly dif-
ferent (p < 0.05). Data source in Supplemental Information. Full-size DOI: 10.7717/peerj.9956/fig-3
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its activity is always higher in IAC-100 than in Davis. SOD activity was significantly
greater in IAC-100 (p < 0.05) when affected by stink bugs (Fig. 3C). When comparing
cultivars, GPOX showed a higher activity in IAC-100 both with and without damage
caused by the insect (p < 0.05, Fig. 3D).

Lipoxygenase expression quantification
Expression of LOX1 and LOX2 was induced by herbivory in both soybean cultivars when
compared to their respective controls (Fig. 4). It suggests that soybean plants respond to this
type of stress by increasing LOX expression after 24 h following treatment (p < 0.05).

Figure 4 Gene expression by Real-Time PCR of LOX1 and LOX2 in soybean seeds, either
undamaged and damaged by Nezara viridula. (A) LOX1. (B) LOX2. Gene expression is relative to
the soybean elongation factor (ELF1b). Means values (bars) and SEM (whiskers) are shown. Different
letters are significantly different (p < 0.05). Data source in Supplemental Information.

Full-size DOI: 10.7717/peerj.9956/fig-4
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Isoflavonoids
Concentrations of isoflavonoids in soybean seeds showed differences between cultivars and
types of compounds (Fig. 5). After herbivory, the concentration of daidzin and genistin
increased in both genotypes and constitutive concentrations were similar and very low
(p < 0.05; Figs. 5A and 5C). Higher levels of daidzein were found in the IAC-100 genotype,

Figure 5 Isoflavonoid concentration in seeds of cultivars Davis and IAC-100 damaged by stink bugs
and their respective controls without herbivory. (A) Daidzin concentration. (B) Genistin concentra-
tion. (C) Daidzein concentration. Means values (bars) and SEM (whiskers) are shown. Different letters
are significantly different (p < 0.05). Data source in Supplemental Information.

Full-size DOI: 10.7717/peerj.9956/fig-5
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regardless of the treatment, with a strong uprising trend under herbivory (p < 0.05;
Fig. 5B). Except for one repeat of the cultivar Davis genistein was not detected in any
treatment (Supplemental Information).

DISCUSSION
Previous experiments with the IAC-100 soybean genotype reported low incidence of stink
bugs (McPherson, Buss & Roberts, 2007). This cultivar has PI 229358 (Clement &
Quisenberry, 1998) and PI 274454 (Souza et al., 2015) in its genealogy (Carrao-Panizzi &
Kitamura, 1995), which exhibits a high degree of resistance to the stink bug complex. Some
studies have shown antixenosis in IAC-100 against N. viridula, P. guildinii and E. heros
(Campos et al., 2010; Silva et al., 2014; De Souza et al., 2014), and biological effects through
isoflavonoids on N. viridula (Piubelli et al., 2003a). Our study suggests that cultivar
IAC-100 maybe more tolerant to the southern green stinkbug due to greater hardness in
pods, which serves as the first line of defense. In addition, a higher antioxidative enzyme
activity was involved in plant defense, and it showed high levels of isoflavonoids in
response to insect attack which, according to some authors (Lane et al., 1985; Murakami
et al., 2014; Simmonds & Stevenson, 2001) affect the performance and survival of the
herbivores.

Antixenosis in resistant plants can be related to morphological factors such as thickened
plant epidermal layers, waxy deposits on leaves, stems, or fruits, nutritional deficiency,
and chemical compounds (Smith, 2005). The thickness of various plant tissues influences
the degree of resistance in some crop cultivars. Stink bug (N. viridula) damage elicits
activation of MAPK signal in soybean seeds and induced salicylic acid that induced genes
related with cell wall restructuration and increased lignin content, which can increase
resistance to new insect attack by hardening cell walls (Giacometti et al., 2018). In this
study, pods of IAC-100 cultivar showed greater resistance to penetration when compared
to those of Davis, suggesting that hardening may be a physical barrier to insect feeding
(Fig. 2).

Under stress conditions in plants, such as insect feeding, many signaling pathways are
activated by different types of ROS causing “oxidative burst” (Maffei, Mithöfer & Boland,
2007). After insect attack, ROS are accumulated acting as the first barrier against the
attack of pathogens and herbivores. However, to avoid self-toxicity by ROS, plant cells
have ROS scavenging systems that help to remove the excess concentration and maintain a
relatively low and constant one (War et al., 2012). Tolerance in plants is generally related
to the control capacity of the cellular redox state resulting in lower oxidative damage
(Slesak et al., 2007). ROS accumulation was detected after the feeding period of the
chewing caterpillar S. littoralis or the piercing-sucking action of the spider mite
Tetranychus urticae (Maffei et al., 2006; Afify et al., 2011). Infestation of lima beans by
S. littoralis revealed, trough diaminobenzidine (DAB) staining, accumulation of H2O2

around the wounded area (Maffei et al., 2006). In our study we found that IAC-100 had
less accumulation of H2O2 after insect feeding when compared to the susceptible genotype,
which suggests that it has a higher capacity to control the redox state. A previous study
demonstrated that ROS detoxification enzymes were only induced in H2O2-accumulating
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resistant lines (Moloi & Van der Westhuizen, 2008). POD is one of such group of
antioxidative enzymes, which scavenges the ROS besides having other defensive roles
because they are also an important component of the immediate response of plants to
insect damage (War et al., 2012). Catalases remove the H2O2 and reduce H2O2 to 2H2O.
And SOD constitutes a frontline in the defense against ROS as they catalyze the
dismutation of O2− (superoxide radical) to H2O2 (Caverzan, Casassola & Brammer, 2016).
In wheat, an increase in SOD transcript in response to differential heat shock treatment
was related to an enhanced tolerance to environmental stresses (Kumar et al., 2013).
The present study demonstrates that the resistant cultivar had more control of the cellular
redox state given its high level of enzyme activity after herbivory in SOD, GPOX y CAT
(Fig. 3).

Many studies have shown that LOXs are implicated in the defense systems of several
plant species against pathogens and insects (Koch et al., 1992; Melan et al., 1993; Felton
et al., 1994; Christensen et al., 2013). Induction of LOX activity after herbivory has
previously been studied in tomato in response to Helicoverpa armigera (Yan et al., 2013),
in Arabidopsis following infestation by Myzus persicae and in lima bean in response to
Tetranychus urticae (Moran & Thompson, 2001; Arimura et al., 2000). In developing seeds
of soybean, we found an induction of LOX1 and LOX2 after herbivory in both genotypes
under study suggesting that this pathway is activated in response to the damage caused
by Nezara viridula.

LOX activity regulates the production of the hormone JA, which modulates flavonoids
and isoflavonoids that protect plants against insect pests and affect the behavior,
growth and development of insects (Simmonds, 2003). In Arabidopsis, resistance against
Spodoptera frugiperda is enhanced overexpressing a transcription factor that controls
flavonoid production (Johnson & Dowd, 2004). In soybean leaves, flavonoids negatively
affected the behavior of Aphis glycines and Trichoplusia ni (Meng et al., 2011; Neupane &
Norris, 1990). Moreover, soybean seed damage caused by soybean pod borer (Leguminivora
glycinivorella) was negatively correlated with higher levels of isoflavonoids, and showed
positive correlations between isoflavonoid content in pods and undamaged seeds in
treatments with stink bugs (Nezara viridula and Piezodorus guildinii) (Zhao et al., 2015;
Zavala et al., 2015). Our results reveal that stink bug herbivory differentially promoted
isoflavonoid production between genotypes with variations according to the type of
compound. It can thus be concluded that not only total production of isoflavonoids but
also the type of isoflavonoid produced can affect insect behavior.

CONCLUSIONS
Taken the results together, it can be inferred that stink bug herbivory injury generates cell
wall changes, induces pathways related to oxidative stress and secondary metabolites in
developing seeds of soybean. As a result of the resistance characteristics to insects, such as
control of cellular redox state and production of secondary metabolites, IAC-100 is a
promising cultivar for a breeding program. However, further studies are still required to
understand the functions of genes and the regulatory factors involved in defense responses
in order to develop molecular markers for a breeding program.
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The study of host plant resistance is an important alternative for producers in
Argentina, but even more in Brazil, not only because of the high insect pressure but also for
the phytopathogenic fungi that lead to the frequent use of chemical control.
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