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Abstract

Several equids have gone extinct and many extant equids are currently considered vul-

nerable to critically endangered. This work aimed to evaluate whether domestic horse

oocytes support preimplantation development of zebra embryos obtained by intracyto-

plasmic sperm injection (ICSI, zebroid) and cloning, and to study the Hippo signaling path-

way during the lineage specification of trophectoderm cells and inner cell mass cells. We

first showed that zebra and horse sperm cells induce porcine oocyte activation and recruit

maternal SMARCA4 during pronuclear formation. SMARCA4 recruitment showed to be

independent of the genetic background of the injected sperm. No differences were found

in blastocyst rate of ICSI hybrid (zebra spermatozoon into horse egg) embryos relative to

the homospecific horse control group. Interestingly, zebra cloned blastocyst rate was sig-

nificantly higher at day 8. Moreover, most ICSI and cloned horse and zebra blastocysts

showed a similar expression pattern of SOX2 and nuclear YAP1 with the majority of the

nuclei positive for YAP1, and most SOX2+ nuclei negative for YAP1. Here we demon-

strated that horse oocytes support zebra preimplantation development of both, ICSI and

cloned embryos, without compromising development to blastocyst, blastocyst cell number

neither the expression of SOX2 and YAP1. Our results support the use of domestic horse

oocytes as a model to study in vitro zebra embryos on behalf of preservation of valuable

genetic.
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Introduction

Domestic horses and donkeys, wild asses, zebras and Przewalski’s horses share the only extant

genus of the family Equidae: the genus Equus. Interestingly, individuals from the genus Equus
have a remarkable genetic plasticity evidenced by the production of viable hybrids and the

ability of mares, jennies and mules to carry on interspecific gestations [1–5]. Although mules

(female horses x male donkeys) and hinnies (female donkey x male horse) are the best known

equid hybrids, zebras (2n = 32 to 44) and Przewalski’s horses (2n = 66) are able to produce live

offspring by intercross with domestic horses (2n = 64) and donkey (2n = 62) [6].

Over the last few centuries, several equine subspecies have gone extinct and many extant

equids are considered vulnerable to critically endangered (IUCN 2020, http://www.iucnredlist.

org/). Efforts for the preservation of wild equids are needed for the maintenance of animal

population and genetic variability among individuals. To accomplish these goals, in addition

to natural breeding, conservation programs can be enhanced by using assisted reproductive

techniques (ART) to achieve optimal genetic management of endangered species and over-

come infertility issues [7, 8]. Among ART, cryopreservation of gametes combined with in vitro
embryo production are powerful tools for rescuing endangered animals or to preserve the

genetics of critically endangered species. As conventional in vitro fertilization is not yet robust

in horses, intracytoplasmic sperm injection (ICSI) and somatic cell nuclear transfer (SCNT)

are the main techniques to produce in vitro embryos in horses that can be successfully cryopre-

served for genetic banking and later embryo transfer [9]. ICSI in horses is on the front line rel-

ative to other domestic species, and it has become a widespread procedure for clinical uses

[10] whereas developmental rates after ICSI in other domestic species are still low [11]. ICSI

horse embryos have been obtained using different sources of semen, such as fresh, refrigerated,

frozen, re-frozen, sex-sorted and lyophilized ejaculate [12–15] and also using epididymal fro-

zen semen [16]. Although hybridization within equids is well known in vivo, to the best of our

knowledge, there are no reports on in vitro production of hybrid equid embryos through ICSI.

This could be a powerful tool to generate knowledge about the fertilization, genetics and early

embryo development processes in these species. In parallel, the number of cloned horses pro-

duced by somatic cell nuclear transfer (SCNT) has also significantly increased over the last few

years since the first cloned horse [17]; however, cloning efficiency remains poor [18].

The process of cell allocation during preimplantation embryo development has not been

deeply investigated in equids. During the cell-fate allocation, SOX2 [SRY (Sex Determining

Region Y) -box 2], one of the earliest known unique markers of inner cell mass (ICM) progeni-

tors, is regulated by members of the HIPPO signaling pathway, including YAP1 (Yes Associ-

ated Protein 1) [19]. Moreover, early cell differentiation pathways during preimplantation

embryo development, such as the HIPPO signaling pathway, could be compromised if chro-

matin-remodeling processes do not occur properly. During the maternal-to-zygotic transition,

chromatin remodeling plays an essential role [20, 21]. The ATP-dependent chromatin remo-

deler SMARCA4 (Brahma-related gene 1, BRG1) translocates to the pronuclei soon after fertil-

ization [22], and its mislocalization or reduction alters the regulation of transcription, RNA

processing, and the cell cycle, leading to poor embryo development in mice [23–25].

Understanding the reproductive biology and generating comparative knowledge across

species is essential to design and execute species-specific ART for animal conservation pro-

grams [7]. Although vast progress has been made in ART for the domestic horse and a select

group of wild equids (Persian onager and Przewalski’s horse), there is no information on pre-

implantation embryo development in wild equids. Therefore, the aims of this study were: 1) to

first analyze the ability of zebra (Equus quagga burchelli) sperm to trigger egg activation and

SMARCA4 recruitment during pronuclear formation after ICSI, 2) to assess preimplantation
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development as well as SOX2 and YAP1 expression in hybrid (zebroid) ICSI embryos pro-

duced with domestic horse (Equus ferus caballus) oocytes as recipient for zebra sperm and, 3)

to evaluate preimplantation development and the expression of SOX2 and YAP1 of interspe-

cies SCNT zebra embryos produced with domestic horse oocytes as recipient for zebra somatic

cells.

Materials and methods

Unless otherwise stated, all chemicals were obtained from Sigma, St. Louis, MO, USA.

Experimental design

Experiment 1. Due to the very limited access to horse oocytes, a porcine model was used

for this experiment as a method to estimate the ability of zebra sperm to induce activation as it

was reported previously for horses [26]. We compared the ability of zebra, horse and porcine

sperm to activate and induce pronuclear formation when injected into porcine eggs (porcine-

zebra, porcine-horse, and porcine-porcine ICSI embryos) and we evaluated SMARCA4 levels

in pronuclei. Three biological replicates were performed this experiment.

Experiment 2. Domestic horse eggs were injected with zebra sperm (Zebroid experimen-

tal group) or horse sperm (Horse experimental group). In vitro embryo development was

evaluated until the blastocyst stage and then all embryos were fixed for immunofluorescence

analysis of YAP1 and SOX2. Three biological replicates were performed for this experiment.

Experiment 3. SCNT embryos were produced using horse oocytes derived from abattoir

ovaries. Two experimental groups were performed according to the donor cell: 1) zebra SCNT

and 2) domestic horse SCNT. In vitro embryo development was evaluated until the blastocyst

stage and all embryos were fixed for immunofluorescence analysis of YAP1 and SOX2. Three

biological replicates were performed for this experiment.

Ethics and animal welfare statement

The experiments performed in this manuscript did not required the approval from the Ethics

and Animal Welfare Committee of the Faculty of Agriculture, University of Buenos Aires

given that no living animals were involved (CICUAL-FAUBA, Res. CD 1476/19, Reglamento

para el cuidado y uso de animales para enseñanza, investigación y servicios). Fundación

Temaikén is a member of WAZA (World Association of Zoos and Aquariums) and AZA

(Association of Zoos and Aquariums), and thus complies with their standards on animal wel-

fare and ethical research protocols.

Oocyte collection and in vitro maturation

Horse ovaries were obtained from the abattoir (Frigorı́fico Land, located in Córdoba, Argen-

tina) during breeding season and were processed locally as described by [27]. Briefly, cumu-

lus-oocyte complexes (COCs) were recovered by follicular scraping of all visible follicles using

a surgical bone curette, with the contents washed into a 50 mL tube with Dulbecco’s phos-

phate-buffered saline (DPBS, 14190136, Thermo Fisher Scientific) solution. After the contents

had settled to the bottom of the tube, the content was transferred with a micropipette to a petri

dish and diluted with Hepes-buffered Tyrode´s medium containing albumin, lactate and pyru-

vate (TALP-H, [28]). COCs were isolated and washed twice in TALP-H. The COCs were kept

in TALP-H at room temperature (20–25˚C) and transported to the laboratory located in Bue-

nos Aires, Argentina. Transportation time varied from 20 to 24 h. In vitro maturation was per-

formed for 22–24 h in 100-μL drops of bicarbonate-buffered Tissue Culture Medium (TCM-
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199, 11150–059, Thermo Fisher Scientific) supplemented with 10% v/v fetal bovine serum

(FBS, SH30406.02IH25, GE Healthcare Life Sciences, HyCloneTM, USA), 1 μL/mL insulin-

transferrin-selenium (ITS, 51300044, Thermo Fisher Scientific), 1 mM Na pyruvate (P2256),

100 mM cysteamine (M9768), 10 μg/mL Follicle Stimulating Hormone (FSH, NIH-FSH-P1,

Folltropin1, Bioniche, Ontario, Canada), and 1% v/v penicillin-streptomycin antibiotic (ATB,

P4458)under 300 μL mineral oil (M8410) in 5% CO2 in humidified air at 38.5 ˚C. Between 20

and 30 COCs were placed in each drop.

Porcine COCs were aspirated from ovaries derived from the local slaughterhouse (Frigorı́-

fico Minguillon, registration number 1466, SENASA) using an 18-gauge needle attached to

a 10 mL disposable syringe. Compact COCs were selected, washed twice in TALP-H and

matured for 44 h in 100-μL drops of TCM-199 under mineral oil, supplemented with 0.3 mM

sodium pyruvate, 100 mM cysteamine, 5 μg/mL myo-Inositol (I5125), 1 μL/mL ITS and 1% v/

v ATB, 10 μg/mL FSH, 5 ng/mL Fibroblast Growth Factor (F3685) and 10% v/v porcine follic-

ular fluid. Between 20 and 30 COCs were placed in each drop. Follicular fluid was obtained

from follicles of 3 to 6 mm of diameter, centrifuged at 400 g for 30 min at 5˚C, filtered and

then aliquoted and stored at -20˚C.

Cumulus cell and zona pellucida removal

The cumulus cells of both horse and porcine COCs were removed by vortexing for 3 min in

TALP-H containing 3 mg/mL hyaluronidase (H3506). For experiment 1 and 2, matured zona-

intact porcine and horse oocytes, respectively, were subjected to ICSI. For experiment 3, the

zona pellucida of matured horse oocytes was removed by incubation in 1.5 mg/mL pronase

(P8811) in TALP-H on a warm plate at 38.5˚C. Zona pellucida-free oocytes (ZF-oocytes) were

washed in TALP-H and maintained in a 50-μL drop of DMEM/F12 supplemented with 5% v/v

FBS and 1% v/v ATB until enucleation.

ICSI and embryo culture

Frozen sperm cells from a plain male zebra, frozen semen from a fertile stallion, and porcine

refrigerated semen were used for ICSI experiments. After the dead by natural causes of a male

zebra at the Fundación Temaikén zoo, sperm cells from the epididymis were collected and fro-

zen by the authors for gene banking. Up to date, these samples were only used for this study.

Horse frozen semen was donated by the artificial insemination horse center located in Buenos

Aires, Argentina. Porcine semen was donated by “Agroceres PIC” located in Buenos Aires,

Argentina. For frozen sperm, a portion of one straw was cut under liquid nitrogen and sub-

merged in 4 mL of TALP-H, centrifuged twice at 300 x g, washing with the same solution. A 1-

μL aliquot of semen was taken from the supernatant and placed in a 3-μL drop of 7% v/v polyvi-

nylpyrrolidone (Irvine Scientific, Santa Ana, CA, US) in TALP-H. ICSI was performed using a

7 μm (for horse/zebra sperm) or 9 μm (for porcine sperm) glass sharp micropipette in an

inverted microscope (Nikon Eclipse TE-300 microscope Nikon, Melville, NY, USA) using

hydraulic micromanipulators (Narishige, Medical Systems, Great Neck, NY, USA). Presumptive

zygotes were cultured in 50% DMEM F12/ 50% Global Total1 (LGGT-030, LifeGlobal, Guilford,

CT, USA) with 6% v/v FBS and 1% v/v ATB for up to eleven days. Cleavage was assessed on day

5 and the blastocyst rate was recorded form day 7, daily until day 11, given horse ICSI blastocysts

are reported to appear in vitro up to day 10 [29]. All day 7–8 ICSI blastocysts were fixed for

immunofluorescence. For evaluation of pronuclear (PN) formation in porcine oocytes, pre-

sumptive zygotes were in cultured in porcine zygote medium for 16–18 h and then centrifuged

for 10 min at 1000 x g and fixed. After immunofluorescence, embryos were classified according

to the presence of pronuclei: two PN (2-PN), one PN with the presence of a semi-condensed or
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condensed sperm (1-PN), or a semi-condensed or condensed sperm with no evidences of PN

(No activation). Embryos that exhibited a different pattern were included into “other” category.

Enucleation, nuclear transfer and embryo construction

ZF-oocytes were incubated for 5 min in DMEM/F12 with 5% v/v FBS, 1% v/v ATB and 0.01

mg/mL Hoechst 33342 dye (B2261). The metaphase plate was removed by aspiration using a

blunt pipette under ultraviolet light and a closed holding pipette to manipulate the oocyte.

Enucleation was performed using hydraulic micromanipulators (Narishige, Medical Systems,

Great Neck, NY, USA) mounted on a Nikon Eclipse TE-300 microscope in a 100-μL drop of

TALP-H supplemented with 0.5 μg/mL cytochalasin B (C6762). ZF-enucleated oocytes were

kept in DMEM/F12 with 5% v/v FBS and 1% ATB v/v until NT. ZF-enucleated oocytes were

transferred individually to a 50-μL drop of DMEM/F12 containing 1 mg/mL phytohemaggluti-

nin (L8754). After a few seconds, oocytes were dropped over a single donor cell resting in a

100-μL drop of TALP-H. The couplets were then placed in fusion medium [0.3 M mannitol

(M9647), 0.1 mM MgSO4 (63138), 0.05 mM CaCl2 (C7902) and 1 mg/mL polyvinyl alcohol

(P8136)] for 2–3 min before being placed in a fusion chamber containing 2 mL fusion medium

at 38.5˚C. Fusion was performed using BTX Electro-Cell Manipulator 830 (BTX, Inc., San

Diego, CA). The fusion parameters were as follows: double-direct current pulse of 1.2 kV/cm,

for 30 μs and 0.1 s apart. Couplets were then individually placed in a 5-μL drop of DMEM/F12

with 5% FBS v/v and 1% v/v ATB and incubated under mineral oil at 38.5˚C in 5% CO2 in air.

Each couplet was assessed 10 to 20 min after the pulse. Absence of the donor cell in the drop

confirmed fusion. Non-fused couplets were fused again. Two hours after fusion, ZF-recon-

structed embryos (ZFREs) were activated. ZFREs were treated with 8.7 mM ionomycin

(I24222, Thermo Fisher Scientific) in TALP-H for 4 min, followed by individual culture for

4 h in a 10-μL drop of DMEM/F12 supplemented with 5% v/v FBS, 1% v/v ATB, 1 mM 6-

dimethylaminopurine (D2629) and 5 μg/mL cycloheximide (C7698, [30]).

In vitro embryo culture of SCNT embryos

A modified well-of-the-well system was used to in vitro culture ZFREs [31]. The microwells

were produced by gently pressing a heated glass capillary into the base of a 35 x 10 mm Petri

dish. Microwells were covered with a 50-μL drop of DMEM/F12 containing 5% v/v FBS, 1% v/

v of ATB and 1 μL/mL ITS. Taking advantage of embryo aggregation [32, 33] two ZFREs were

randomly introduced into each microwell for experiment 3 in all experimental groups. The

number of ZFREs per drop was similar between groups. Embryos were cultured in a humidi-

fied gas mixture of 5% CO2, 5% O2 and 90% N2 at 38.5˚C. Cleavage was assessed on day 5 and

the blastocyst rate was recorded form day 7, daily until day 11. All day 7–8 cloned blastocysts

were fixed for immunofluorescence.

Cell culture

Adult fibroblasts were obtained after culture of minced tissue from neck skin biopsies from an

adult male plain zebra after death at Fundación Temaikén, Escobar, Buenos Aires, Argentina.

Adult fibroblasts from a death male horse were used for horse SCNT. Cells were cultured in

Dulbecco’s modified Eagle’s medium (DMEM/F12, 11320033, Thermo Fisher Scientific, Wal-

tham, MA, USA) with 10% v/v FBS, 1% v/v ATB, and 1 μL/mL ITS in 5% CO2 in humidified

air at 38.5˚C. Once the primary culture was established, fibroblasts were subcultured every 4 to

6 days, cryopreserved in DMEM with 10% v/v FBS and 10% v/v dimethyl sulfoxide (DMSO,

D2650), and stored in liquid nitrogen until used. Quiescence of donor cells was induced by

growth to confluency for 3 to 5 days prior to nuclear transfer. Populations of cells were

PLOS ONE In vitro zebra ICSI and SCNT embryo preimplantation development

PLOS ONE | https://doi.org/10.1371/journal.pone.0238948 September 11, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0238948


prepared by trypsinization (25200056, Thermo Fisher Scientific). Cells were then washed and

resuspended in DMEM/F12.

Embryo fixation, immunofluorescence and cell counting

Presumptive ICSI zygotes, and SCNT and ICSI blastocysts were fixed for 20 min in 4% formal-

dehyde (47608) in DPBS, rinsed in DPBS with 0.4% w/v bovine serum albumin (BSA, A6003),

and stored at 4˚C in 96-well plates. Embryos were treated with permeabilization solution [DPBS

containing 0.2% v/v Triton X-100 (21123)] for 15 min and washed in blocking buffer [DPBS

containing 0.1% v/v Tween 20 (P9416) and 0.4% w/v BSA]. Presumptive zygotes fixed 18–20 h

after ICSI on porcine oocytes were incubated with SMARCA4 antibody [Brg-1 (G-7), 1:100, SC-

17796, mouse monoclonal, Santa Cruz Biotechnology, Dallas, TX, USA. AB_626762] overnight

at 4˚C in blocking buffer. A negative control group without primary antibody was included for

all assays. After washing, all embryos were incubated with secondary antibody (Alexa Fluor1

Plus 594,1:1000, donkey anti-mouse, #A32744, Thermo Fisher Scientific) in blocking buffer for

1 h in the dark. Fixed blastocysts were incubated with SOX2 antibody [Sox-2 (Y-17), 1:200, SC-

17320, goat polyclonal, Santa Cruz Biotechnology, AB_2286684] overnight at 4˚C in blocking

buffer. Afterwards, embryos were washed three times for 15 min in blocking buffer, followed by

1 h incubation at room temperature with YAP1 antibody [YAP (H-9), 1:100, SC-271134, mouse

monoclonal, Santa Cruz Biotechnology, AB_10612397]. After washing, embryos were incubated

with secondary antibodies (Alexa Fluor1 555, 1:1000, donkey anti-goat, # 21432 and Alexa

Fluor1 488, 1:1000, donkey anti-mouse IgG #A21202, Thermo Fisher Scientific) in blocking

buffer for 1 h in the dark. Finally, presumptive zygotes and blastocysts were mounted in Vecta-

shield1 containing 1.5 μg/mL DAPI (Vector Laboratories, Burlingame, CA), and slides were

scanned using an inverted confocal microscope (Olympus IX83 Spinning Disk Confocal Sys-

tem). The analysis of total cell number, and quantification of SOX2 positive (SOX2+) and YAP1

positive (YAP1+) nuclei was performed manually with FIJI image processing software. Intensity

of SMARCA4 protein in PN was only analyzed in ICSI zygotes with the presence of 2 PN. A

region of interest was drawn around each pronucleus and the average pixel intensity was deter-

mined with FIJI image processing software [34].

Statistical analyses

All statistical analyses were performed using GraphPad Prism software. Comparisons of two

groups were performed using Mann-Whitney U test. Comparisons of three groups were per-

formed using Kruskal-Wallis test, with Dunn’s multiple comparisons test. Embryo preimplan-

tation development rates were compared using two-tailed Fisher’s exact test with a CI of 95%.

Differences were considered statistically significant with a value of P� 0.05.

Results

Experiment 1: Pronuclear formation and SMARCA4 recruitment after

injection of zebra, horse and porcine sperm into porcine oocytes

To first assess whether zebra semen was able to induce egg activation, we injected zebra

spermatozoa into matured porcine oocytes for detection of PN formation and analysis of

SMARCA4 protein expression. As control groups, horse and porcine sperm cells were also

injected. Zebra sperm were capable of inducing porcine egg activation, and no differences

were observed in the number of oocytes with 2-PN among experimental groups (Table 1)

although the number of non-activated eggs was lower in zebra group compared with the

domestic horse (p = 0.0013) and the porcine (p = 0.0365). SMARCA4 was found to be localized
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in both PN in all interspecific experimental groups, and it was absent in polar bodies, meta-

phase plate or condensed sperm (Fig 1). Interestingly, out of 16 homospecific porcine 2-PN-

ICSI zygotes analyzed, 31.25% showed clear asymmetric intensity levels of SMARCA4 between

PN, with only one SMARCA4 positive (Fig 1A). The rest of the porcine-porcine zygotes

(68.75%) showed similar SMARCA4 intensity levels between PN (Fig 1B). All interspecific

zebra/horse-porcine zygotes showed similar intensity levels in both PN. We next compared

SMARCA4 pronuclear intensity levels among groups, but considering only those embryos

with similar SMARCA4 levels between PN. Non-significant differences were found in

SMARCA4 intensity levels in this comparison (Fig 2A). These results demonstrated that zebra

sperm induce porcine egg activation and that maternal SMARCA4 can be recruited to a heter-

ologous pronucleus at similar levels than the counterpart pronucleus.

Experiment 2: Intragenus ICSI zebra hybrid embryos

In vitro development of zebroid ICSI embryos. After zebra semen evaluation in experi-

ment 1, we evaluated whether zebra sperm had the ability to induce domestic horse egg activa-

tion and trigger in vitro embryo development to blastocyst stage, we carried out ICSI using

domestic horse sperm (control group) or zebra sperm. Zebra sperm showed a slightly lower

ability to trigger embryo development compared to horse sperm revealed by the lower cleavage

rate (p = 0.01). Remarkably, cleaved zebroid embryos developed to blastocyst stage at similar

rates compared to the control group (Table 2). Altogether, these results showed that sperm

cells recovered from the epididymis of a zebra can successfully induce domestic horse egg acti-

vation and trigger embryo development to blastocyst stage.

Zebroid ICSI embryo cell early differentiation. To study horse and zebroid blastocysts

early cell differentiation of the ICM and the trophectoderm (TE), we evaluated total cell num-

ber and YAP1 and SOX2 expression patterns in zebroid and horse ICSI blastocysts. A total of

6 embryos were analyzed in this study, 3 for each experimental group. The majority of the

nuclei were positive for YAP1, and most SOX2+ nuclei were grouped in a particular area of

the blastocyst (putative ICM cells) and were found negative for YAP1 (Fig 3A and 3B). No

differences were observed in total blastocyst cell number (Fig 2B). Interestingly, one day 11

hatched zebroid blastocyst had a different YAP1 expression pattern (Fig 3C). This embryo,

with higher cell number and an advanced developmental stage, showed a lower percentage of

YAP1+ nuclei. These results suggest that heterospecific reprogramming of zebra sperm cells

by domestic horse oocytes might not affect the localization of YAP1 and SOX2 compared to

the homospecific counterpart.

Experiment 3: Intragenus SCNT zebra embryos

In vitro development of SCNT zebra embryos. To study whether domestic horse enucle-

ated oocytes support zebra SCNT embryo development, we compared in vitro development up

Table 1. Pronuclear evaluation of zebra, horse and porcine sperm cells injected into matured porcine oocytes.

Group # presumptive zygotes # 2-PN (%) # 1-PN (%) # No activation (%) # Other (%)

Zebra-porcine 30 9 (30.00) 1 (3.33)a 17 (56.66)a 3 (10)

Horse-porcine 31 14 (45.16) 9 (29.03)b 5 (16.12)b 2 (6.45)

Porcine-porcine 47 16 (34.04) 13 (27.65)b 15 (29.78)b 6 (12.79)

Total 108 39 (36.11) 23 (21.29) 37 (34.25) 11 (10.18)

Different superscript letters indicate statistical significance. (Fisher’s exact test, P-values< 0.05). PN: pronucleus.

https://doi.org/10.1371/journal.pone.0238948.t001
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to the blastocyst stage of homospecific horse cloned embryos with heterospecifc intragenus

zebra embryos. Although no differences in cleavage rates between groups were observed,

cloned zebra blastocyst rate was significantly higher on day 8 (p = 0.0151) and on day 11

(p = 0.0237) compared to the control (Table 3). These results demonstrated that in vitro
matured horse oocytes support the development of zebra SCNT embryos up to the blastocyst

stage without compromising developmental rates.

SCNT zebra embryo early cell differentiation. To investigate whether zebra SCNT blas-

tocysts could have a compromised early cell differentiation of ICM and TE due to potential

failures during heterospecific epigenetic reprogramming, we performed immunofluorescence

analysis to study YAP1 and SOX2 protein expression patterns. A total of 14 SCNT blastocysts

Fig 1. Representative immunofluorescent staining of ICSI zygotes of the indicated groups. (A) Homospecific porcine-porcine zygote showing asymmetric

SMARCA4 levels between PN. (B) Homospecific porcine-porcine zygote showing similar SMARCA4 levels between PN. (C) Heterospecific zebra-porcine zygote.

(D) Heterospecific horse-porcine zygote. Scale bars indicate 50 μm.

https://doi.org/10.1371/journal.pone.0238948.g001
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were analysed, 9 from zebra and 5 from horse experimental groups. Overall, non-significant

differences in total cell number, or in number of SOX2+ or YAP1+ nuclei were observed

between groups (Figs 2C–2E and 4). As observed for ICSI embryos, in SCNT blastocyst the

majority of the nuclei were positive for YAP1, and most SOX2+ nuclei were grouped in a par-

ticular area of the blastocyst and were found negative for YAP1. Interestingly, one blastocyst of

each group showed a scattered expression pattern of SOX2 without a clear grouped arrange-

ment and with an increased number of cells positive to both SOX2 and YAP1 (Figs 2F and 4).

Fig 2. Analysis of embryo quality and SMARCA4, YAP1 and SOX2 expression. (A) Total cell number in the blastocysts from the indicated groups. (B)

Percentage of YAP1-positive (YAP1+) nuclei in blastocysts from the indicated groups. (C) Percentage of SOX2-positive (SOX2+) nuclei in blastocysts from the

indicated groups. (D) Percentage of YAP1+ and SOX2+ nuclei in blastocysts from the indicated groups. (E) Immunofluorescence quantification (arbitrary units)

of SMARCA4 in ICSI zygotes of the indicated groups. (F) Total cell number in ICSI blastocysts from the indicated groups. Errors bars in all panels display standard

error of the mean (SEM).

https://doi.org/10.1371/journal.pone.0238948.g002

PLOS ONE In vitro zebra ICSI and SCNT embryo preimplantation development

PLOS ONE | https://doi.org/10.1371/journal.pone.0238948 September 11, 2020 9 / 17

https://doi.org/10.1371/journal.pone.0238948.g002
https://doi.org/10.1371/journal.pone.0238948


These observations suggest that heterospecific reprogramming of zebra skin cells by domestic

horse oocytes does not significantly affect lineage specification compared the its homospecific

counterpart.

Discussion

Taking advantage of remarkably similar morphology and ecological niches among equids [35]

domestic horses can be postulated as a model to optimize ART for its future application in

wild equid conservation programs [36]. To the best of our knowledge, the data reported here

demonstrate for the first time that the domestic horse oocyte supports in vitro preimplantation

embryo development of another species of the genus Equus, the zebra, without compromising

the expression and localization of the early cell differentiation markers, YAP1 and SOX2, or

blastocyst cell number.

In endangered species, there is a limited supply of cryopreserved semen creating a barrier

in the application of reproductive biotechnologies in conservation breeding programs. There-

fore, developing in vitro methods for estimating in vivo fertilization rates of cryopreserved

sperm are needed. Embryo production through ICSI overcomes limited semen availability,

and our results demonstrate that the ability of zebra sperm cells to produce embryos can be

tested by producing in vitro hybrid (zebroid) embryos. Testicular and epididymal sperm for

ICSI has been successfully used in humans as an alternative from ejaculated sperm in patients

with cryptozoospermia [37, 38] and no increased risk in neonatal outcomes was found in new-

borns [39]. Moreover, in mice, caput sperm have the same potential to produce offspring after

ICSI than cauda sperm [40]. These previous findings demonstrated that the changes that occur

during the transit through the epididymis might not be crucial for normal fertilization and

embryo development after ICSI. Using a porcine model, we showed that epididymal zebra

sperm cells induce oocyte activation and recruit SMARCA4 during pronuclear formation.

Moreover, the translocation of SMARCA4 into the pronuclei could be independent of the

genetic background of the injected sperms given that horse sperm cells were also able to recruit

same levels of SMARCA4. Our study represents the first looking at SMARCA4 recruitment

during heterospecific reprogramming of male nuclei and it could be used as an interesting

approach to identify chromatin remodeling failures during heterospecific reprogramming.

Remarkably, the higher proportion of non-activated oocytes observed with zebra sperm in

porcine eggs was reflected by the lower cleavage rate observed in zebroid ICSI embryos in

experiment 2. Thirty percent of the homospecific porcine ICSI zygotes showed a remarkable

difference of SMARCA4 recruitment between PN, and since SMARCA4 recruitment during

pronuclear development is likely crucial for later embryo survival [22], this observation might

be linked to the lower developmental rates reported for porcine ICSI embryos when no addi-

tional artificial stimulation is applied [41].

Heterospecifc SCNT using phylogenetically related (intragenus) or distant species has been

attempted in numerous mammalian species, including endangered animals, with variable

results [42–45]. Furthermore, heterospecific cloning has been attempted to rescue extinct

Table 2. In vitro preimplantation development of zebroid and horse ICSI embryos.

Group # ICSI embryos # cleaved embryos (%) # day 8 blastocysts (%) # day 11 blastocysts (%)

Horse 75 50 (66.66)a 9 (12.00) 13 (17.33)

Zebroid 49 21 (42.85)b 2 (4.08) 3 (6.12)

Total 124 71 (57.25) 11 (8.87) 16 (12.94)

Different superscript letters indicate statistical significance. (Fisher’s exact test, P-value < 0.05).

https://doi.org/10.1371/journal.pone.0238948.t002
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subspecies such as Pyrenean ibex [46]. In horses, we have previously reported that felid oocytes

in interspecies SCNT were more prone to support preimplantation embryo development of a

horse somatic cell than bovine or porcine oocytes [47], possibly due to a closer phylogenetic

proximity of felid species to horses [48]. Interestingly, the first equid produced by SCNT was

an equid hybrid, a mule [49]. Supporting this finding, a recent study demonstrated that horse

Fig 3. Representative immunofluorescent staining of ICSI blastocyst stage embryos of the indicated groups. Scale bars indicate 50 μm.

https://doi.org/10.1371/journal.pone.0238948.g003
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ooplasm supports somatic cell reprograming of a mule without compromising H19 gene

imprinting [50]. In contrast to zebras, mules share half of the genetic background and the

mitochondrial DNA with domestic horses, which could facilitate nuclear reprogramming and

embryo developmental competence. Our findings demonstrate that the domestic horse oocyte

supports in vitro development of zebra SCNT embryos up to the blastocyst stage. Surprisingly,

the blastocyst developmental rate obtained from the zebra SCNT group was significantly

higher compared to the homospecific SCNT. However, this could be due to a fibroblast pri-

mary culture effect as it influences the developmental success of SCNT [30, 32]. In the early

1980s, the remarkable plasticity of equine pregnancy was revealed when embryos of Przewals-

ki’s horse, domestic horse, domestic donkey, and Grant’s zebra were transferred to horse, don-

key and mule recipients to obtain live offspring [1, 3, 4]. Thus, domestic equid females could

be used as recipients for SCNT or ICSI zebra embryos, or potentially any other in vitro pro-

duced wild equid embryo, opening the possibility to deeply investigate the amazing features

of equine pregnancy such as immunological tolerance, placentation, and pregnancy-related

endocrinological functions.

The low efficiency of SCNT has been primarily attributed to failures during nuclear repro-

gramming processes, which are necessary to restore the totipotency of the donor somatic cell

nucleus [51, 52]. In horses, several strategies were recently attempted to improve nuclear

reprogramming, but non-significant differences were observed in development [53]. More-

over, failures during cell reprogramming could affect the expression pattern of proteins

involved in cell-fate specification and compromise embryo viability [54]. The Hippo/YAP sig-

naling cascade plays an important role in early embryo cell differentiation [55]. In the TE,

YAP translocates into the nucleus to activate TE-specific genes, whereas in the ICM, YAP is

phosphorylated leading to its cytoplasmic sequestration and extrusion from the nucleus [56].

Furthermore, SOX2 was reported to be one of the earliest known unique markers of ICM pro-

genitors [25]. In our study, we have not found significant differences between domestic horse

and zebra embryos YAP1 and SOX2 expression patterns, suggesting that domestic horse

oocytes are capable of supporting in vitro preimplantation embryo development of an embryo

with either half or the entire zebra genome of a without compromising the HIPPO cascade.

We have found that SOX2 and YAP1 are mutually exclusive in nuclei of equid blastocysts as it

was previously reported in mice [25]. Interestingly, one cloned blastocyst from each experi-

mental group showed an altered expression pattern of YAP1/SOX2. Since differentiation of

ICM and TE is crucial for later embryo survival, we hypothesized that these embryos could

had a compromised developmental competence and that evaluation of these proteins could be

useful for assessing embryo quality in horses.

Up to the present, the only reproductive strategy used to preserve wild equids is by conser-

vation breeding programs. Our results show that advanced ARTs, such as ICSI and intragenus

SCNT, are feasible to be applied for the preservation of endangered or resurrection of wild

zebras such as the Equus quagga quagga. Also, our data strongly suggest that the HIPPO signal-

ing pathway, during early embryo cell differentiation, is conserved in equids as it was reported

Table 3. In vitro preimplantation development of zebra and horse SCNT embryos.

Group # ZFREs # cleaved ZFREs (%) # day 8 blastocysts (%) # day 11 blastocysts (%)

Horse SCNT 55 41 (74.54) 5 (9.09)a 7 (12.72)a

Zebra SCNT 58 44 (75.86) 16 (27.58)b 18 (31.03)b

Total 113 85 (75.22) 21 (18.54) 25 (22.12)

Different superscript letters indicate statistical significance. (Fisher’s exact test, P-values< 0.05). ZFREs, zona pellucida-free reconstructed embryos.

https://doi.org/10.1371/journal.pone.0238948.t003
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for mice [25] and cattle [57] and support the use of these markers to identify cell fate on equine

blastocyst [58].
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31. Vajta G, Peura T, Holm P, Páldi A, Greve T, Trounson A, et al. New method for culture of zona-included

or zona- free embryos: the well of the well (WOW) system. Mol Reprod Dev. 2000; 55:256–264.

PLOS ONE In vitro zebra ICSI and SCNT embryo preimplantation development

PLOS ONE | https://doi.org/10.1371/journal.pone.0238948 September 11, 2020 15 / 17

https://doi.org/10.1530/REP-17-0357
https://doi.org/10.1071/RD19301
https://doi.org/10.1071/RD19301
https://doi.org/10.1016/j.anireprosci.2012.10.027
https://doi.org/10.1016/j.anireprosci.2012.10.027
https://doi.org/10.1071/RD17374
https://doi.org/10.1071/RD17374
https://doi.org/10.1371/journal.pgen.1004618
https://doi.org/10.1038/s41580-018-0008-z
https://doi.org/10.1038/s41580-018-0008-z
https://doi.org/10.1016/j.devcel.2020.04.018
https://doi.org/10.1017/S096719940600400X
https://doi.org/10.1017/S096719940600400X
https://doi.org/10.1101/gad.1435106
https://doi.org/10.1101/gad.1435106
https://doi.org/10.1083/jcb.200603146
https://doi.org/10.1128/MCB.00546-15
https://doi.org/10.1016/j.jevs.2016.05.014
https://doi.org/10.2527/jas.2013-7026
https://doi.org/10.1095/biolreprod16.2.228
https://doi.org/10.1095/biolreprod16.2.228
https://doi.org/10.1007/s10815-018-1174-9
https://doi.org/10.1530/rep.1.00772
https://doi.org/10.1371/journal.pone.0238948


32. Gambini A, Jarazo J, Olivera R, Salamone DF. Equine cloning: in vitro and in vivo development of

aggregated embryos. Biol Reprod. 2012; 87:1–9. https://doi.org/10.1095/biolreprod.112.098855

33. Gambini A, De Stefano A, Bevacqua RJ, Karlanian F, Salamone DF. The aggregation of four recon-

structed zygotes is the limit to improve the developmental competence of cloned equine embryos.

PLoS ONE. 2014; 9(110: e110998. https://doi.org/10.1371/journal.pone.0110998

34. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Meth-

ods. 2012; 9:671–675. https://doi.org/10.1038/nmeth.2089

35. Linklater WL. Adaptive explanation in socio-ecology: lessons from the Equidae. Biol Rev Camb Philos.

2000; 75:1–20.

36. Smits K, Hoogewijs M, Woelders H, Daels P, Van Soom A. Breeding or assisted reproduction? Rele-

vance of the horse model applied to the conservation of endangered equids. Reprod Domest Anim.

2012; 47:239–248. https://doi.org/10.1111/j.1439-0531.2012.02082.x

37. Silber SJ, Devroey P, Tournaye H, Van Steirteghem AC. Fertilizing capacity of epididymal and testicular

sperm using intracytoplasmic sperm injection (ICSI). Reprod Fert Develop. 1995; 7(2):281–283. https://

doi.org/10.1071/rd9950281

38. Kang Y, Hsiao Y, Chen C, Chien W. Testicular sperm is superior to ejaculated sperm for ICSI in crypto-

zoospermia: An update systematic review and meta-analysis. Sci Rep. 2018; 8:7874. https://doi.org/10.

1038/s41598-018-26280-0

39. Jin L, Li Z, Gu L, Huang B. Neonatal outcome of children born after ICSI with epididymal or testicular

sperm: A 10-year study in China. Sci Rep. 2020; 10(1):5145. https://doi.org/10.1038/s41598-020-

62102-y
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