
RESEARCH ARTICLE

Characterized non-transient microbiota from

stinkbug (Nezara viridula) midgut deactivates

soybean chemical defenses

Virginia Medina1, Pedro M. Sardoy1, Marcelo Soria2, Carlos A. Vay3, Gabriel O. Gutkind3,4,

Jorge A. Zavala1,4*

1 Universidad de Buenos Aires, Facultad de Agronomı́a, Cátedra de Bioquı́mica -Instituto de Investigaciones
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Abstract

The Southern green stinkbug (N. viridula) feeds on developing soybean seeds in spite of

their strong defenses against herbivory, making this pest one of the most harmful to soy-

bean crops. To test the hypothesis that midgut bacterial community allows stinkbugs to tol-

erate chemical defenses of soybean developing seeds, we identified and characterized

midgut microbiota of stinkbugs collected from soybean crops, different secondary plant

hosts or insects at diapause on Eucalyptus trees. Our study demonstrated that while more

than 54% of N. viridula adults collected in the field had no detectable bacteria in the V1-V3

midgut ventricles, the guts of the rest of stinkbugs were colonized by non-transient micro-

biota (NTM) and transient microbiota not present in stinkbugs at diapause. While transient

microbiota Bacillus sp., Micrococcus sp., Streptomyces sp., Staphylococcus sp. and others

had low abundance, NTM microbiota was represented by Yokenella sp., Pantoea sp. and

Enterococcus sp. isolates. We found some isolates that showed in vitro β-glucosidase and

raffinase activities plus the ability to degrade isoflavonoids and deactivate soybean protease

inhibitors. Our results suggest that the stinkbugs´ NTM microbiota may impact on nutrition,

detoxification and deactivation of chemical defenses, and Enterococcus sp., Yokenella sp.

and Pantoea sp. strains might help stinkbugs to feed on soybean developing seeds in spite

of its chemical defenses.

Introduction

Even if developing soybean seeds respond to stinkbug damage up-regulating important

defenses against herbivore insects, as cysteine proteases inhibitors and isoflavonoids produc-

tion [1,2], these induced chemical defenses are not sufficient to stop attack by the southern
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green stinkbug (N. viridula) or the red banded stinkbug (Piezodorus guildinii), what makes

them the most harmful pests to soybean crops [3,4].

N. viridula has an annual life cycle that generally comprehends five generations [5]. During

the onset of bloom and podset in late summer, soybean becomes attractive to stinkbugs, and

the third generation of adults migrates into the crop. Subsequently, the fourth and fifth genera-

tions also develop within this crop, at a time when they can feed on their developing seeds [5].

However, when soybean (primary host) is not available stinkbugs specific preference for soy-

bean pods changes to many other plant species depending on its maturity and phenology

(secondary hosts: SH), and plants in stage of fruit and pod formation are more attractive [6].

Whereas in tropical or subtropical areas with mild winters N. viridula feeds on any secondary

hosts available [6], in colder areas the last generation to reach adult stage seeks shelter under

the bark of trees beginning diapause, which is a critical period for the population [7].

Diversification and evolutionary success of insects have depended in part on a number of

relationships with beneficial microorganisms that have been known to increase the nutritional

value of diets and allow the digestion of recalcitrant compounds [8–11]. Several studies have

discussed the potential effects of diets on gut microbial composition and insect host [12–17]. A

study comprehending 62 insect species, including N. viridula, showed that diet certainly affects

intraspecific gut bacterial community profiles when the host and microbiota are intimately

associated, such as in lignocellulose digestion [18]. Moreover, gut bacterial diversity is signifi-

cantly higher in omnivorous than in stenophagous (carnivorous and herbivorous) insects

[19]. It has been suggested that technologies used in agricultural production systems, such as

changes in soil management by crop rotations or use of agrochemicals like pesticides and her-

bicides, may shape the microbial communities of soil and plants, inducing insects to adopt

these new microbial species, which may help them to adapt to these altered or changing envi-

ronments [20].

Symbiotic/aposymbiotc studies performed with two related stinkbug species (Megacopta
punctatissima andM. cribaria) suggest that these species success as soybean crops pests is

more related to their relationship with their obligate gut symbiont (Ishikawaella capsulate)
than to specific traits of the insect species [21]. Another interesting example is the variant of

the corn (Zea mays) pest western corn rootworm (WCR; Diabrotica virgifera virgifera Le
Conte) which in last years started feeding on soybean foliage and also acquired tolerance

against cysteine protease inhibitors, a specific defense against Coleopteran insects [22]. Gut

microbiota analysis of the new variant of WCR suggests that it is the bacterial community

what allows the insects to tolerate defenses and to feed on the new host (soybean) [23].

Although the cyclic annual feeding behavior and host multiplicity of N. viridula could have

some impact on gut microbial community composition, it seems clear that understanding the

impact of feeding on developing soybean seeds on microbial community may explain stink-

bugs behavior.

Previously, it has been shown that Klebsiella pneumoniae and Enterococcus faecalis are pres-

ent in the midgut of N. viridula specimens collected in Brazil [24]. Moreover, Klebsiella pneu-
moniae was isolated from N. viridula adults collected in soybean fields near College Station,

TX [25]. Other studies have focused on an obligate symbiont resident in the caeca of N. viri-
dula that may have relevance on nymph survival, which has been consistently identified in

Brazil, Hawaii, California and Japan [24,26–28]. Egg-surface sterilization disrupts nymphal

infection with the symbiont, indicating vertical transmission of the gut symbiont via egg sur-

face contamination[26]. Eliminating the symbiont resulted in severe nymphal mortality and

emergence of few adult insects. These results contrasts with those studies on Hawaiian popula-

tions of N. viridula [27,29], wherein elimination of the gut symbiont caused few fitness defects

in the host. Although Streptomyces sp strains were also associated with the caeca of lab reared
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stinkbug adults, no further analysis was performed [30]. In addition, a Pantoea sp. strain has

been associated with the caeca of another stinkbug pest, Halyomorpha halys [31], and the lack

of this symbiont decreases survivorship of stinkbug subsequent generations [32]. However,

little is known about the biological function of the bacteria present in stinkbugs ventricles

where digestion is performed (V1-V3 of the midgut)[33]. Since N. viridula is polyphytopha-

gous and tolerate plant defenses, characterization of the bacterial community associated with

insects collected in field production areas will improve our understanding of stinkbug-soybean

interactions.

To study the mechanisms of midgut bacteria-insect symbiosis that might help stinkbugs

to overcome plant defenses, we characterized the midgut microbial community potentially

related with digestion and associated to different stinkbug’s hosts (diet) along the year. In addi-

tion, we determined diapause influence on stability and composition of resident microbiota.

Finally, we characterized isolated bacteria and identified potential functional activities related

to soybean digestion, and inactivation of chemical defenses, such as cysteine protease inhibi-

tors. Our results allowed us to draw conclusions about the possible functions of midgut bacte-

rial community in circumventing soybean defences by the southern green stinkbug in the

main production areas of central Argentina.

Materials and methods

Sample collection and treatments

To assess variations of the microbial community composition in guts of stinkbugs collected

across different geographical locations, 173 N. viridula (Hemiptera, Pentatomidae) adults were

collected in 26 collecting events: 8 collections from different species of plants with the excep-

tion of soybean, which were considered as secondary hosts (SH; total of 52 stinkbugs), 9 collec-

tions from soybean crops (53 stinkbugs) and 9 from Eucalyptus trees (diapause; 68 stinkbugs)

at different moments of the year with a random sampling design along three years (2012–

2014). Sample collections events were distributed in 15 different sites located in central east

Argentina: Rafaela (-31,269161–61,484985), Paraná (-31.866785, -60.483346) and Oliveros

(-32,578063, -60,853958) (Santa Fé Province), Pincen (-34,834096, -63,923950) and Marcos

Juarez (-32,699489, -62,100220) (Córdoba Province), La Plata (-35,014814, -58,069611),

Lujan (-34,569906, -59,118805), Pergamino (-33,897777, -60,571060), Rojas (-34,198173,

-60,731049), Carabelas (-34,037867, -60,871811), Pila (-35,980229, -57,994852), San Antonio

de Areco (-34,265161, -59,449768), Chacabuco (-34,642247, -60,852295) and General Villegas

(-35,056980, -63,006592) (Buenos Aires Province), and the experimental field of our Facultad

de Agronomı́a, Universidad de Buenos Aires in Buenos Aires city (-34,590259, -58,457565)

(S1 Table and S1 Fig). All collecting events were carried out on private land with the exception

of one carried out on Facultad de Agronomı́a experimental fields that belong to our place of

work. The owners of private lands gave permission to conduct de collecting of Nezara viridula
and also gave information about pesticides applications. Field studies did not involve endan-

gered or protected species. The funders had no role in study design, data collection and analy-

sis, decision to publish, or preparation of the manuscript.

Insects were collected from soybean crops at reproductive stage or plant species around the

crops, where pesticides were never applied before each collection event. Geographical location

(latitude and longitude) of each site was registered by GPS and plant species where N. viridula
adults were found, identified and annotated (S1 Table). Samples were composed by 4 to 10

adults of stinkbugs that were handpicked and dissected to analyze bacterial community. Gut

community of stinkbugs was analyzed by Automated Ribosomal Intergenic Spacer Analysis

(ARISA) supplemented with agar plate culturing techniques on Trypticase Soy Agar (TSA)
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media. Based on differences in colony morphology on TSA plates, 21 different isolates were

preliminarily identified by 16S rRNA sequencing. Frequency and abundance of each identified

bacteria were annotated with the aim of hierarchize its biological importance. For those iso-

lates that needed more accurate identification MALDI-TOF MS bacterial identification tech-

nique was performed. Based on the ability of each bacterium to remain in the gut of stinkbugs

during diapause, and their abundance and their frequency of appearance, we classified bacte-

rium as either Non-Transient Microbiota (NTM) (bacterial count� 104 CFU/mg gut and

present in SH, soybean and Eucalyptus trees) or Transient microbiota (TM) (bacterial count

under 100 CFU/mg gut, present only in SH and soybean). Members of the NTM were charac-

terized by API 20E for enterobacteria, and 50 carbon sources fermentation API 50CH strips

(Biomerieux). Phylogenetic analysis was performed by comparing sequences obtained from

the analysis of isolated bacteria with those of reference strains indexed at the LPSN site (http://

www.bacterio.net/). Bacterial localization was analyzed through microdissection of midgut

ventricles and ARISA (S2 Fig). To determine potential functionality of NTM bacteria isolated

and identified from the gut of stinkbugs, in vitro metabolic assays, including lipolytic, proteo-

lytic and glycolytic activities were performed. To assess the ability of bacteria to decrease inhib-

itory activity of soybean cysteine proteases inhibitors, soybean meal was fermented with NTM

isolated bacteria and compared against cysteine protease papain as control.

Insect dissection, bacteria isolation and DNA extraction

Stinkbugs were dissected under aseptic conditions no later than 8 h after collection. Guts were

entirely removed from insects and pooled on 1000 μL sterile buffer phosphate pH 7, and dis-

rupted by homogenization with a plastic pestle. For bacterial count and isolation, 100 μl ali-

quot were serially diluted and plated on Trypticase Soy Agar and cultured at 37 ˚C for 18 h

under aerobic conditions, Colonies with morphological differences of 17 different agar plates

(bacterial gut communities of individual insects) were chosen for further isolation, identifica-

tion, ARISA chromatograms performance, and in vitro activities (S2 Table). Remaining

homogenates of individual guts from each sample were pooled and total gut DNA was purified

with PowerFecal DNA Isolation kit (MOBIO) to perform gut bacterial community analysis

with ARISA (S2 Table).

Frequency and abundance of bacteria

Frequency of each identified bacterium was defined as positive results on plate counts (isolated

and identified) and/or ARISA detection. Relative abundance was the ratio between colony

forming units in 1 mg of intestine (CFU/mg of gut) of each species of bacteria identified and

the total number of colonies counted on the agar plate.

Isolated bacteria identification

For initial characterization, Gram staining and oxidase test [34] were used. DNA extraction of

each isolate was performed with UltraClean Microbial DNA Isolation Kit (MOBIO) and two

independent 16S rRNA fragments were PCR-amplified and sequenced. Firstly, the variable

region V4 was amplified with universal primers 530f (5´-GTGCCAGCMGCCGCGG-´3) and

1392r (5´-ACGGGCGGTGTGTRC-3´)according to Geib, SM et al (2009)[35]. For those iso-

lates that needed more accurate identification, a near-full length 1,450 bp fragment of 16S

rRNA was amplified according to Lehman, RM et al. (2009) [36]. PCR products were ligated

into pGEM-T Easy vector (Promega), and Escherichia coli DH5a were transformed. Plasmids

were extracted with a QIAprep1 Spin Miniprep kit (QIAGEN, Valencia, CA). Briefly, the

inserts were amplified using the vector flanking sequences as primers (T7 and sp6 promoters).

Stinkbug’s non-transient microbiota
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A second pair of internal primers Sp6L01 (5`-AGTTTAT CACTGGCAGTCTCC-3´) and

T7H01 (5´-GTACTTTCAG CGAGGAGAAG-3´) were used for sequencing the central 700

bp region. The BioEdit Sequence Alignment Editor software was used to build the entire

sequence. Sequencing was done at Leloir Institute Facility, Buenos Aires, Argentina. The com-

plete 16S rRNA gene sequences of strains isolated in this study are sequences of known species

previously isolated by other groups, and these sequences are available for electronic retrieval

from the EMBL, GenBank.

All isolates were deposited in the National Bank of Microorganisms of the Institute of

Investigations in Agricultural and Environmental Biosciences (INBA-CONICET) of the

Agronomy School at University of Buenos Aires, Argentina.

MALDI–TOF MS for bacterial identification

To identify NTM isolates, we used MALDI-TOF (Matrix Assisted Laser Desorption Ioniza-

tion-Time of Flight) mass spectrometry [37]. Cultures were grown in TSA medium (Trypticase

Soy Agar, Laboratorios Britania S.A), incubated at 37 ˚ C for 18h. Samples were processed on a

Microflex MALDI-TOF MS spectrometer (Bruker Daltonics, Bremen, Germany) and analyzed

using the coupled software FlexControl v3.0 (Bruker Daltonics). Protein # 1 standard (BTS,

Bruker Daltonics) was included for calibration. All samples were analyzed in duplicate. The

analysis was performed by direct extraction methodology "on spot". A colony was deposited

without prior extraction step using a wooden stick and allowed to be air dried at room temper-

ature on a metal plate in MALDI-TOF. The samples were fixed with 1 μl of formic acid and

then with 1 μl of α-cyano-4-hydroxycinnamic acid to allow co-crystallization of the matrix

solution with the sample at room temperature. The positrons were extruded linearly at an

acceleration of 20 kV. The obtained spectra represent the sum of the ions obtained after the

impact of 350 automatic shots of the laser. The spectra were analyzed in a range of m/z (mass/

ionic charge ratio) of 3,500 to 20,000. Identification was performed using the MALDI Bioty-

perTM v3.1 program (Bruker Daltonics) by comparison of the mass spectra obtained for the

microorganisms under study with those included in their database. A possible error of a +10

variation of the peak value of m/z was considered. The results were interpreted from the score

assigned by the software to each sample (in the context of the analysis performed on the micro-

organisms under study). According to the criteria proposed by the manufacturer, a result was

considered valid (accurate identification to the species level) whenever the score value was

�2.0 [38].

Phylogenetic analysis

Phylogenetic trees were constructed for all the identified bacteria, adding previously reported

Yokenella, Pantoea and Enteroccocus 16S rRNA 1450 bp sequences. To evaluate the phyloge-

netic proximity of Yokenella sp isolates to those bacteria identified as Klebsiella pneumoniae
in N. viridula guts collected in Brazil [24], we included sequences available from the type strain

of Yokenella regensurgei ATCC 49455, other strain of Yokenella sp., the type strains Klebsiella
oxytoca ATCC 13182, Klebsiella michiganensis ATCC BAA-2403 and Klebsiella pneumoniae
ATCC 13885.

In a second tree, NvP01 sequence was compared with 23 type strains of Pantoea species. A

third phylogenetic tree was constructed to analyze the proximity our enterococci to other

Enterococcus sp type strains (Enterococcus faecalis JCM 5803 and Enterococcus moriaviensis
ATCC BAA-383), and those enterococci identified in guts of N. viridula collected in Brazil

[24].

Stinkbug’s non-transient microbiota
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All phylogenetic analyses were conducted in MEGA software version 6.06 [39]. Sequences

corresponding to the 16S rRNA gene were aligned using the Muscle algorithm. A survey of

genetic distances based on the alignments was performed and the Kimura 2-parameter [40]

substitution model with Gamma corrections for variations of the mutation rate across sites

was chosen. For gap treatment, complete deletions were considered. The neighbor joining

algorithm [41] was used to generate the phylogenetic trees and they were validated with a boot-

strap of 1000 replicates.

Bacterial localization and cysteine protease activity in individual midgut

ventricles of reared N. viridula adults

Stinkbug adults were kept under rearing conditions in plastic cages at 23˚C; 10:12h dark/light;

60% humidity, and they were fed with mature rehydrated soybean seeds, dehulled sunflower

seeds and unsalted peanuts seeds. Ten reared adults were dissected under sterile conditions

and guts were microdissected and pooled to obtain samples of individual midgut ventricles.

ARISA detection and plate count was performed as it is reported elsewhere. Cystein protease

activity was measured according to Zavala et al (2008)[42] Here, cysteine proteinase activity

was estimated by using the chromogenic substrate p-Glu-Phe-Leu-pNA. Then 10 μl of the 18×
diluted enzyme was added to 20 μl of 0.38 mM p-Glu-Phe-Leu-pNA [in 0.1 M NaPhosphate,

0.3 M KCl, 0.1 mM EDTA, and 3 mM dithioerythreitol (pH 6.0)] and incubated at 37˚C.

Absorbance at 410 nm from wells on the microtiter plate was measured at 20-s intervals for

20 min with N. viridula guts enzymes. Initial rates of hydrolysis were estimated from the slopes

of the resulting absorbance versus time graphs. One cysteine activity unit was defined as the

amount of enzyme required to produce 1 mM 4-nitroaniline per minute at 37˚C using p-Glu-

Phe-Leu-pNA as a substrate under given assay conditions. Here, cysteine protease activity

against specific substrate (p-Glu-Phe-Leu-NA; Sigma) is normalized with total protein content

in the gut (Bradford-BioRad). Enzymatic kinetics curves were performed on a microplate spec-

trophotometer BIOTEK 808xl, with 402 nm filter. Enzymatic kinetics curves were performed

on a microplate spectrophotometer BIOTEK 808xl, with 402 nm filter. The assay was per-

formed in triplicate.

Identification of V4 midgut symbiont in N. viridula
A consistent peak of 745 pb was detected in all field collected samples and in reared stinkbugs

when bacterial community ARISA was performed (S2 Fig). Ventricle microdisecction allow us

to locate this peak on V4 midgut ventricle and purified this ITS fragment from agarose gel

using Agarose gel PCR purification kit. This fragment was cloned and sequence as it is

reported in previous sections. After sequencing, BLAST data base was used to confirm bacte-

rial origin and identify at family level.

Bacterial gut community Automated Ribosomal Intergenic Spacer Analysis

(ARISA)

To characterize stink bug gut bacterial community, ARISA electropherograms of total gut and

isolated bacteria were compared. ARISA specifically amplifies 16S and 23S rRNA intergenic

spacer and allows identifying the presence of uncultivable bacteria. The polymerase chain reac-

tion (PCR) step was performed according to the method described by Kent and Bayne (2010)

[43]. Intergenic spacers (ITS) were amplified with primers 23Sr (5´-GGGTTBCCCCATTCRG-
3´) and 1406f (5´-TGYACACACCG CCCGT-3´) marked at the 5´end with 6-FAM fluores-

cent dye. Denaturing capillary electrophoresis was carried out for each PCR reaction using an

Stinkbug’s non-transient microbiota
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ABI 3130 Genetic Analyzer (Applied Biosystems) at the Biotechnology Institute, INTA Caste-

lar, Argentina. Estimation of DNA fragment sizes was accomplished by using synthetic molec-

ular weight size standard ABI GeneScan™ 1200 LIZ. 748bp and 756bp peaks were used as

positive control as they were consistently found in all samples (field collected and reared

adults). As ARISA and bacterial count on agar plates were conducted in parallel, we were able

to determine that sensibility of ARISA technique was at least of 103 CFU/mg gut, as it was seen

for Collecting event N˚ 25 (S3 Table).

Functional digestive activities of NTM isolates

Glycolytic activity of enterobacteria and enterococci was followed by using the 50 carbon

source fermentation strip API 50CHE (Biomerieux) accordingly to the manufacturer’s recom-

mendations. Fermentation of soybean seeds main components, sucrose, manose, cellulose and

raffinose was recorded at 24 h and 48 h. Proteolytic activity was detected by plating (as a spot)

5 μl of overnight pure cultures adjusted to 0.1 McFarland onto Skim Milk Agar, incubated 96

h at 23-30-37 ˚C. Any transparent halo around the site of inoculation was considered as a posi-

tive proteolytic result. Lipolytic activity was evaluated by Rodhamine B-olive oil agar, incu-

bated as described above, and any pink/orange fluorescent halo was considered as a positive

result using a florescent lamp with an excitation wavelength of 350 nm [44].

Soybean whole meal fermentation and cysteine protease inhibitory activity

determination

Whole mature seeds of soybean cv. Williams were grounded with a coffee grinder to obtain

fine flour. The flour was sieved through a 0.5 mm pore metal mesh and suspended 20% in ster-

ile distilled water. Ten ml of the suspension were transferred into each of several 15 ml Falcon

tubes. An aliquot was immediately stored at -20˚C (non-pasteurized control). Remaining ali-

quots were pasteurized in a water bath at 50˚C for 1 h to reduce protein denaturation, includ-

ing cysteine protease inhibitors. 100 μl of a 108 CFU/ml suspension of overnight cultures were

inoculated in the pasteurized suspensions, and cultures were maintained for 24 h at 37 ˚C.

One tube was left without inoculation of bacteria (non-inoculated control). After this period,

soybean ferments and control were homogenized with vortex for 30 seconds and 1 ml aliquots

of each ferment and control were centrifuged at 12000 g for 20 min to obtain cysteine protease

inhibitors extracts. Cysteine proteases inhibitory activity of fermented and non-fermented

(control) soybean whole meal extracts was measured against papain by following the release of

p-nitroaniline (pNA; 37˚C for up to 20 min at 410 nm) after adding the synthetic substrate p-

Glu-Phe-Leu-pNA [42]. Briefly, 30 μl of 28 μg/ml papain was incubated in a 96-microplate

with 0–10 μl of supernatant of soybean fermented extracts at 37˚C for 10 min before addition

of the substrate. Cysteine protease inhibitors concentration was normalized with total protein

content in the gut (Bradford-BioRad)[42]. Enzymatic kinetics curves were performed on a

microplate spectrophotometer BIOTEK 808xl, with 402 nm filter. The assay was performed in

triplicate.

Statistical analysis

To evaluate the relationship between the presence of bacteria in the gut of N. viridula and the

host where stinkbugs were feeding on, Chi square (and Fisher´s exact) test was performed. To

evaluate the efficiency of isolated bacteria to inactivate cysteine protease inhibitor of soybean

whole meal, ANOVA with Dunnet posttest was performed, and non-inoculated pasteurized

soybean meal was used as control. To evaluate the effects of incubation of bacteria with
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soybean meal on cysteine proteases inhibitory activity, a t-test was performed. All analysis

were made with Prism 5.01 2007 (GraphPad Software Inc).

Results

Insect host survey

Before we started the study of bacterial community in the gut of N. viridula, we performed a

survey to determine the main hosts where these stinkbugs naturally feed on. During the south-

ern hemisphere winter (June to August), N. viridula adults were found on diapause, sheltering

under the bark of Eucalyptus trees present at the edges and in internal patches of soybean

crops (Fig 1). In spring, as result of longer photoperiod and increase of average temperature,

N. viridula begins to colonize different plant species as hosts (secondary hosts: SH) around the

trees. From mid-September to late January, adults were found feeding on mulberry (Morus
nigra L.), passion flower (Passiflora sp), honey locust (Acacia megaloxylon) and burdock (Arcti-
cum lappa) (Fig 1). Stinkbugs were also collected from maize (Zea mays), rapeseed (Brassica
napus), wheat (Triticum aestivum) and pecan (Carya illinoinensis) (Fig 1). We were not able to

find representative number of stinkbugs between November and December, probably because

of the low number of adults and the dispersion of stinkbugs among many plant species. How-

ever, from the beginning of February until the end of April stinkbugs moved from secondary

hosts to soybean crop (primary host), where they were collected (Fig 1). N. viridula colonized

soybean crops from the edges of the field during pods elongation (R4 according to Fehr and

Caviness, [45] and the population started to grow inside the field. The last generation of stink-

bugs turned to adult feeding on senescing soybean pods, thus they sought shelter under Euca-
lyptus bark to survive through winter (diapause) (Fig 1).

Identification and characterization of midgut microbiota and its

relationship with the insect host

Midgut microbial community analysis through ARISA and bacterial plate count of 173 stink-

bugs from 26 collecting events revealed that N. viridula is associated with few species of bacte-

ria (Table 1). Based on colony morphology, 21 gut bacteria were isolated and divided in two

groups (Table 1). The first group, with a bacterial count over 104 CFU/mg of gut, was identi-

fied as members of the Enterobacteriaceae and Enterococcaceae families (Non-Transient micro-

biota; NTM). These isolated bacteria were also detected by the culture independent technique

ARISA. Sequence analysis of the genes coding for the 16S rRNA showed that seven isolates of

Enterobacteriaceae were close to Yokenella (NvH01, NvO01, NvP02, NvR01, NvU01, NvU02,

NvW01) with a 99% similarity (Table 1). These isolates were further confirmed as related to

the Yokenella genus by MALDI-TOF MS bacterial identification. Isolates NvH01 and NvO01,

were identified as Y. regensburgei with scores 2.04 and 2.07 respectively, while NvP02, NvW01,

NvU01, NvU02 and NvR01, were identified as Yokenella sp. as their scores were <2 (1.73,

1.96, 1.94, 1.85 and 1.96, respectively) (S3 Table). In addition, we were able to identify one iso-

late as Pantoea sp (NvP01), and one as Cedecea sp (NvMJ01). Conversely, we found 4 gram-

positive isolates to be Enterococcus sp (NvH02, NvM04, NvS01 and NvW02).

Among isolates with sporadic presence and counts lower than 100 CFU/mg of gut, that

were not detected by ARISA (Transient microbiota; TM), other different bacteria were identi-

fied, such as Bacillus sp. (NvJ01, NvM02 and NvO02), Streptomyces sp. (NvI01), Micrococcus
sp. (NvI02 and NvS02) and Staphylococcus sp. (NvJ01) (Table 1). Since strict aseptic conditions

were used during dissection and plating, external contamination was preliminarily discarded.

ARISA profiles of identified bacteria allowed evaluating gut insect samples without further
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specific isolation. For example, Yokenella sp. consistently showed ARISA peaks of 626, 710,

780 bp; Pantoea sp. peaks of 651, 667 and 858 bp; Cedecea peaks of 659 and 815 bp and Entero-
coccus sp. peaks of 502 and 602 bp (S2 Table).

We found a strong association between gut bacterial community and plant host of N. viri-
dula (Fisher´s test—X2: 23.0; df: 4, p = 0.001; Fig 2). NTM was found in the guts of 17% of

stinkbug adults feeding on SH and in 26% of those feeding on soybean, and in 26.5% of stink-

bugs in diapause under the bark of Eucalyptus trees (Fig 2). While transient microbiota was

present in 29% of stinkbugs guts that were feeding on SH and in 12% of those feeding on soy-

bean, this microbiota was absent in stinkbugs during diapause (Fig 2). Also, 54%, 62% and

73.5% of stinkbugs guts were found to be free of cultivable bacteria on TSA or ARISA detect-

able bacteria, when feeding on secondary hosts, soybean or under the bark of Eucalyptus trees,

respectively.

Gut bacterial community richness of collected samples (α diversity) ranged between cero

and five, and was restricted to three main phyla: Enterobacteriaceae, Enterococcaceae, Bacilla-
ceae (S2 Table). Regarding enterobacterial isolates, Yokenella sp. was detected in ten collecting

events (two from SH; three from soybean, and five from Eucalyptus trees) (S2 Table), while

Pantoea sp. was detected in two collecting events (sampled in soybean and in Eucalyptus trees)

and Cedecea only in one (sampled in soybean) (S2 Table). Enterococci were isolated from five

collecting events (two sampled in SH, one in soybean and two in Eucalyptus trees). Enterococ-
cus sp. and Yokenella sp. were found cohabiting Nezara´s gut (collecting events N˚ 1, 9 and

23), where Enterococcus bacterial count was always one logaritmic order over Yokenella (S2

Table). Yokenella was more abundant (106 CFU/mg gut) when inhabiting the midgut without

Enterococcus competition (collecting events N˚ 2, 10, 14, 17, 19; S2 Table).

Fig 1. Nezara viridula hosts survey around the year cycle. Secondary hosts (SH) from late September to late January; soybean (primary host) from

February to late May and under the bark of Eucalyptus trees (diapause) from June to late September.

https://doi.org/10.1371/journal.pone.0200161.g001
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Yokenella was the most frequent NTM in collected stinkbugs. We found Yokenella in eight

stinkbugs feeding on SH and in six feeding on soybean, and in 13 of those found in Eucalyptus
trees (Fig 3a). Conversely, Bacillus sp. was the most frequent among bacteria of the transient

microbiota group. We found Bacillus sp. in six stinkbugs feeding on SH and in three feeding

on soybean crop (Fig 3a). Relative abundance analysis of NTM showed that Enterobacteriaceae
represented 47% of bacterial communities in stinkbugs feeding on SH, and 80% in stinkbugs

feeding on soybean, and in those found under the bark of Eucalyptus trees (Fig 3b). Moreover,

Enterococcus sp. was 47% of the bacterial community in stinkbugs feeding on SH and 19% in

those feeding on soybean, and 20% in the stinkbugs collected from Eucalyptus trees (Fig 3b).

Finally, transient microbiota did not exceed 5% of bacterial population in the gut of stinkbug

feeding on SH and reached 1% in stinkbug feeding on soybean, and was not detected in those

in diapause (Fig 3b).

Bacterial localization in the midgut of N. viridula
Adults of N. viridula reared in laboratory were microdissected to evaluate digestive activity

and bacterial communities of individual ventricles (V). ARISA of midgut dissected ventricles

V1-V4 of N. viridula revealed the presence of enterococci and enterobacteria in ventricles

V1-V3, while caeca (V4) harbored a non-cultivable bacterium with 748 and 756 bp ITS frag-

ments (S2 Fig). Sequencing of the 748 bp fragment confirmed bacterial origin related to the

Enterobacteriaceae family. Cysteine protease activity was higher in ventricles V2-V3 (9.0 ± 1.5

Table 1. Microscopic and molecular identification of 21 isolates from the midgut of field collectedN. viridula adults.

Group Strain�1 ARISA detection log CFU/mg guton TSA�2 Gram stainig 16S ARNr V4 or 1492 bp�3 Selected for characterization�4

Non -Transient microbiota NvH01 Yes 6 Gram—bacilli Yokenel la sp. Yes

NvO01 Yes 6 Gram—bacilli Yokenel la sp. Yes

NvP01 Yes 4 Gram—bacilli Pantoea sp. Yes

NvP02 Yes 6 Gram—bacilli Yokenel la sp. Yes

NvR01 Yes 4 Gram—bacilli Yokenel la sp. Yes

NvU01 Yes 6 Gram—bacilli Yokenel la sp. Yes

NvU02 Yes 6 Gram—bacilli Yokenel la sp. Yes

NvW01 Yes 4 Gram—bacilli Yokenel la sp. Yes

NvMJ01 Yes 5 Gram—bacilli Cedecea sp. NO

NvH02 Yes 7 Gram+ rods Enterococcus faecalis Yes

NvS01 Yes 5 Gram—bacilli Enterococcus sp. Yes

NvW02 Yes 5 Gram+ rods Enterococcus sp. Yes

NvM04 Yes 7 Gram+ rods Enterococcus sp. Yes

Transient microbiota NvI01 NO 1 Gram+ bacilli Streptomyces sp. NO

NvI02 NO 1 Gram + rods MIcrococcus sp. NO

NvJ01 NO 1 Gram+ rods Staphylococcus sp. NO

NvJ02 NO 1 Gram + bacilli Bacillus sp. NO

NvM02 NO <1 Gram + bacilli Bacillus sp. NO

NvM01 NO <1 Gram—bacilli Bacillus sp. NO

NvO02 NO 1 Gram + bacilli Bacillus sp. NO

NvS02 NO <1 Gram+ rods Micrococcus sp. NO

�1: Isolate identification code: NvXN˚; Nv (N. viridula) X (collecting event) N˚ (isolate number).

�2: bacterial count was performed on Trypticase Soy Agar, overnight, 37˚C.

�3: V4 sequences were compared against GenBank database. Complete sequence was compared against SILVA databe.

�4: ARISA detected isolates were chosen for further characterization.

https://doi.org/10.1371/journal.pone.0200161.t001
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activity units and 16.8 ± 2.2 activity units, respectively) than in V4 (0.5 ± 0.05 activity units),

indicating that ventricles V2-V3 are specialized for diet degradation and absorption (S2 Fig).

Phylogenetic analysis of Enterobacteriaceae and Enterococcus sp.

16S rRNA sequences of gut isolates from adults of N. viridulamatched with Yokenella sp.

sequences, which is a species phylogenetically close to Klebsiella (Fig 4). The phylogenetic

analysis of the 16S rRNA gene sequences revealed two different clusters (89% bootstrap confi-

dence); one of the (NvR01, NvO01 and NvU01) match showed a high similarity to the type

strain Yokenella regensburgei ATCC 49455, while the other (NvH01, NvP02, NvU02 y NvW01)

matched closer to a different strain deposited as Yokenella (S3 Table). The first group of Yoke-
nella sp. (NvR01, NvO01 and NvU01) also matches closer to Klebsiella pneumoniae strains

reported by Hirose (24), which are clearly separated from other Klebsiella species, suggesting

that the bacteria isolated in Brazil are more likely to be Yokenella than Klebsiella.

Fig 2. Presence/absence of gut microbiota in N. viridula adults associated with the insect host. Presence of non-transient (black) and transient (light

grey) microbiota or absence of bacteria (Not infected; dark grey) in N. viridula adult’s V1-V3 midgut ventricles; and its distribution related to insect

host: secondary hosts (SH), soybean and under the bark of Eucalyptus trees. Numbers correspond to insect gut dissected.

https://doi.org/10.1371/journal.pone.0200161.g002
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Fig 3. Gut bacterial communities associated with the insect host. Bacteria species inhabiting Nezara viridula infected V1-V3

midgut ventricles and its distribution among insect hosts (a) and relative abundance (CFU/mg gut x n˚ insects positive -1) of

bacterial groups of infectedN. viridulaV1-V3 midgut ventricles and its distribution among hosts (b). �Enterobacteriaceae groups

Yokenella, Cedecea and Pantoea species. Numbers correspond to insect gut dissected.

https://doi.org/10.1371/journal.pone.0200161.g003
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Another enterobacteria was identified as Pantoea sp., (NvP01) with a closer match to P. con-
spicua. Phylogenetic analysis included 22 species of Pantoea and one subspecies of P. stewartii
(Fig 5). Pantoea sp. was also detected with ARISA from stinkbugs collected on Eucalyptus trees

as it presented the same peak pattern as Pantoea sp. NvP01.

We also isolated and identified an Enterococcus sp. strain (NvH02), very closely related

(overall genetic distance 0.002 and similarity greater than 99%) to the Enterococcus faecalis
type strain (Fig 6 and S4 Table). In a separated branch, our other Enterococcus sp. isolates

(NvM04, NvS01 and NvW02) grouped together with those identified in N. viridula in Brazil

[24] (Fig 6 and S4 Table). These bacteria had also a 99% similarity to E. faecalis, and the search

in the RefSeq database of NCBI confirmed that the closest member was indeed E. faecalis.

In vitro enzymatic activities of bacteria in ventricles V1-V3 of N. viridula
To test whether gut isolated bacteria can help stinkbugs to digest soybean, in vitro analysis of

enzymatic activities using a specific culture media were performed. None of the Yokenella iso-

lates were able to utilize sucrose, the main sugar in soybean, and had no proteolytic activity on

casein under aerobic or fermentative conditions (Table 2). Yokenella sp. NvH01 obtained from

Fig 4. Phylogenetic placements of Yokenella strains (bold letters). We constructed a tree that included our isolates, those described as K. pneumoniae by Hirose

et al. (2006), the species reference strains K. pneumoniae ATCC 13885, K.michiganensis ATCC BAA-2403, K. oxytocaATCC 13182, Y. regensburgei ATCC 49455

and one additional strain of Y. regensburgei. Gene bank accession numbers and insect host of bacteria isolated in this study appear in parentheses Escherichia coli
ATCC 11775 was included as an outgroup to root the tree. K.michiganensis and K. oxytocawere included because a blast search in the RefSeq database indicates

that both these species and Y. regensburgei lie at closer genetic distance to the Hirose´s strains than K. pneumoniae. Only the bootstrap values greater than 60% are

shown. Scale bar states for the phylogenetic distance with a common ancestor.

https://doi.org/10.1371/journal.pone.0200161.g004
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stinkbugs feeding onMorus nigra and Yokenella sp NvU01 and NvW01 isolated from those

collected on Eucalyptus trees, had cellulase, maltase, esculinase and rafinase activity, evidenc-

ing α 1–2, β 1–4, α 1–4, β 1–6, α 1–6 glycosidase activity, respectively (Table 2). In addition,

Yokenella sp. NvH01, Yokenella sp. NvO01 isolated from insects feeding on soybean and Yoke-
nella sp. NvR01 and NvU02 isolated from insects in diapause, were positive for lipase activity,

as they showed pink fluorescent colony and degradation halos on Rhodamine B/Olive oil

Agar plates (Table 2). Pantoea sp. NvP01 isolated from insects feeding on soybean was able to

degrade sucrose, cellulose and maltose, but was not able to perform any proteolytic or lipolytic

activity (Table 2).

All of the enterococci strains isolated from insect feeding onMorus nigra (NvH02), rape-

seed (NvS01), soybean (NvM04) or from stinkbugs in Eucalyptus trees (NvW02), were positive

for utilization of sucrose, cellulose and esculine, and negative for utilization of raffinose

(Table 2). E. faecalis NvH02 was also positive for utilization of maltose. No isolated enterococci

strain showed proteolytic or lipolytic activities under the conditions of the assay.

Fig 5. Phylogenetic positioning of Pantoea NvP01 (bold letters). We constructed a tree that included our isolate and type strains of 22 species of Pantoea
and a subspecie of Pantoea stewartii. Gene bank accession numbers and insect host of bacteria isolated in this study appear in parentheses. The sequence of

the type strain Klebsiella pneumoniae ATCC 13883 was included as an outgroup to root the tree. Only the bootstrap values greater than 65% are shown.

Scale bar states for the phylogenetic distance with a common ancestor.

https://doi.org/10.1371/journal.pone.0200161.g005
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Enterobacteria and enterococci isolated strains decrease protease inhibitor

activity of soybean flour during fermentation

To determine whether soybean protease inhibitors can be deactivated through fermentative

process by bacteria from the midgut of stinkbugs, soybean flour was inoculated with represen-

tatives of the different isolated microorganisms and incubated. Incubation of the control (non-

Fig 6. Phylogenetic positioning of Enterococcus isolated strains (bold letters). We constructed a tree that included our isolates, those described as

Enterococcus faecalis by Hirose et al. (2006), and type strain Enterococcus faecalis JCM 5803. Gene bank accession numbers and insect host of bacteria

isolated in this study appear in parentheses. The sequence of the type strain Enterococcus moraviensis ATCC BAA-383 was included as an outgroup to

root the tree. Only the bootstrap values greater than 65% are shown. Scale bar states for the phylogenetic distance with a common ancestor.

https://doi.org/10.1371/journal.pone.0200161.g006

Table 2. Enzymatic activities of isolated strains with significance in soybean digestion.

Enzymatic
activity

Glycolytic�1 Proteolytic�2 Lipolytic�3

α 1–2
glucoside

β 1–4
glucoside

α 1–4
glucoside

β 1–6
glucoside

α 1–6
galactoside

Total
Proteases

Cystein proteases lipases

Substrate Sacarose Cellulose Maltose Esculine Rafinose Casein P Glu Phe Leu

NA

Olive oil

Yokenella sp. NvH01 - + + + + - - +

NvU01 - + + + + - - -

NvW01 - + + + + - - -

NvO01 - - - - - - - +

NvU02 - - - - - - - +

NvR01 - - - - - - - +

NvP02 - - - - - - - -

Pantoea sp. NvP01 + + + - - - - -

Enterococcus
sp.

NvH02 + + + + - - - -

NvS01 + + - + - - - -

NvM04 + + - + - - - -

NvW02 + + - + - - - -

�1. Bacterial glycolytic activities were evidence trough API 50CH strips (Biomerieux).

�2: Bacterial proteolytic activity were evidence on Skim Milk Agar and broth, and against specific cysteine protease substrate GluPheLeu—pNA (Sigma).

�3: Bacterial Lipolytic activity was evidence on Rhodamine B-Olive oil- Agar.

https://doi.org/10.1371/journal.pone.0200161.t002
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inoculated soybean flour) increased the inhibitory capacity of papain activity by 21.3%, proba-

bly due to hydration of soybean meal and activation of cysteine protease inhibitors (p = 0.04).

However, the fermentative activities of Yokenella sp. NvH01, NvO01, NvR01 and NvU02, and

Enterococcus faecalis NvH02 and NvM04 reduced the inhibitory capacity of soybean cysteine

protease inhibitors from 35% to 75% (p<0.001; Fig 7). There were no significant differences

among the different tested microorganisms (ANOVA; p = 0.07; Fig 7). Finally, bacterial cyste-

ine proteases activity on fermented soybean meal was evaluated to identify potential activity

that could mask papain inhibition. There was no cysteine proteases activity detected for any

isolated strain or control.

Discussion

Changing gut environment by bacterial communities allow insects to rapidly adapt to new

hosts and to tolerate plant chemical defenses [10,16,20,23,46–49]. To test the hypothesis that

midgut bacterial community of stinkbugs (N. viridula) deactivates chemical defenses of soy-

bean developing seeds, we identified and characterized midgut microbiota of stinkbugs col-

lected from soybean crops, different secondary plant hosts (SH) or Eucalyptus trees (Fig 1).

Our study demonstrated that while more than 54% of N. viridula adults collected in the field

Fig 7. Inhibition capacity of fermented soybean cv. Williams whole meal extracts against cysteine protease papain. Whole meal was inoculated

with non-transient microbiota (NTM) isolated bacteria and fermented during 24h at 37˚C. Yokenel la sp. NvH01, NvO01, NvR01, NvU01, NvU02 and

NvW01; Pantoea sp. NvP01; Enterococcus faecalis NvH02 and Enterococcus p: NvM04. Control extracts correspond to a pasteurized non-inoculated and

incubated soybean whole meal suspension.

https://doi.org/10.1371/journal.pone.0200161.g007
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had no detectable bacteria in V1-V3 midgut ventricles, the guts of the rest of stinkbugs were

colonized by non-transient microbiota (NTM) and transient microbiota not present in stink-

bugs at diapause (Fig 2).

Whereas transient microbiota had low abundance and was represented by a variable num-

ber of genera, such as Bacillus and Micrococcus, NTM microbiota was composed by enterobac-

teria and enterococci, which were represented by Yokenella sp., Pantoea sp., Cedecea sp. and

Enterococcus sp. isolates (Table 1, Fig 3 and S2 Table). ARISA together with MALDI-TOF and

16S rRNA sequencing techniques permitted us identify the NTM (S3 Table), and phylogenetic

trees allowed us positioning Enterococcus sp. Yokenella sp. and Pantoea sp. among similar spe-

cies, and even suggesting that some microorganisms previously isolated were perhaps errone-

ously identified (Figs 4–6). Our in vitro results suggests that stinkbugs NTM may impact on

nutrition, detoxification and deactivation of chemical defenses (Fig 7 and Table 2), indicating

that Enterococcus sp. Yokenella sp. and Pantoea sp. isolated strains might help stinkbugs to feed

on soybean developing seeds in spite of its chemical defenses. To our knowledge no study

before has characterized the biological functions of N. viridulamicrobiota.

Stinkbugs collected from different areas showed that NTM was present in midgut ventri-

cles V1-V3 where the highest enzymatic activity levels were measured, and suggested that

Yokenella sp., Pantoea sp. and Enterococcus sp. may play an important role on insect nutri-

tion and deactivation of chemical defenses (Fig 3). Midgut isolates of NTM were able to

degrade galactosyl derivatives of sucrose, such as raffinose (Table 2), which is the second

more abundant sugar in soybean seeds and is considered responsible of reducing digestibility

because it has some activity as protease inhibitor [50]. Moreover, digestion of raffinose

results on lower pH and prebiotic short chain fatty acids [51]. In addition, gut bacteria

may deactivate protease inhibitors (Fig 7), which are the main defense of soybean against

insect herbivores that can decrease the activity of digestive cysteine proteases of stinkbugs,

reducing insect performance [1,52]. Although biochemical characterization of Enterococus
sp. Yokenella sp. and Pantoea sp. isolated strains showed no extracellular proteolytic activity

(Table 2), the NTM reduced the inhibitory capacity of cysteine protease activity of soybean

whole meal after 24h of in vitro fermentation (Fig 7), and might help stinkbugs to feed on

soybean developing seeds. Furthermore, midgut isolates of NTM showed β-glycosidase and

α-galactosidase activities, and might hydrolyze the glyosidic bond of the isoflavonoids, genis-

tin and daizin in the insect gut (Table 2). Isoflavonoids participate in the defense against

insect attack, and damage produced by N. viridula increases these phenolic compounds pro-

duction in attacked seeds [1,2,53,54]. It is not clear yet whether the isoflavonoids glycosides

or aglycones are toxic to stinkbugs. Although NTM may play a role in helping stinkbugs to

feed on soybean, we did not detect any bacteria in V1-V3 ventricles in more than 54% of col-

lected insect (Fig 2).

Microorganisms of plant ecto- and endophytic communities are ingested during insect

feeding and some of them can become part of the gut microbiota, depending on pH, enzymatic

activity, redox potential and other intestinal conditions [8,9,55]. Midguts of N. viridula adults

are acidic with a pH of 4.5–6.5, with sectored compartments and high enzymatic activity

[24,33]. The lack of bacteria or low diversity of NTM found in V1-V3 of many stinkbugs (Figs

2 and 3), may be explained by feeding behavior, moulting, gut biochemical and physiological

characteristics, non-gregarious behavior, among others [8,9,55,56]. Non gregarious behavior

of N. viridula adults limit oral-fecal transference of bacteria and conformation of complex gut

bacterial communities, as can be seen in social insects, which allows the stability of symbiotic

bacteria in the population [8,9,55,56]. In addition, piercing sucking feeding behavior of N. viri-
dula could limit horizontal transfer of bacteria by ingestion of endophytes, leaving behind phy-

loplane bacteria [10,57].
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Host also can exert control over their microbiota in midguts by monitoring and targeting

the species to either promote or hinder their proliferation [58]. We found that only few species

of bacteria (NTM) can reside in the midgut of N. viridula (Table 1). Detecting harmful and

beneficial traits of bacteria is a robust way for a host to monitor microbiota. There is a signifi-

cant variability in antimicrobial peptides in host species, suggesting that the secretion of theses

peptides from the host epithelium helps to determine which microbial genotypes prosper [59].

In addition, host diet has a major impact on the available resources within insects, which

results in the microbial species dominating in the midgut. The diversity and frequency of

NTM were higher in stinkbugs feeding on soybean than in those feeding on secondary hosts

(Figs 2 and 3). This may be due to diet quality as soybean is a better substrate for enterobacte-

ria [60]. Also, these bacteria had the ability to remain in the intestine during diapause (Euca-
lyptus trees) probably by colonization of midgut epithelium or the lumen (Fig 3). During

isolation of NTM microbiota, enterobacteria showed fast in vitro growing (data not shown),

suggesting a fast lumen colonization.

To compare the phylogenetic relations of the NTM species isolated from V1-V3 of stink-

bugs collected from the field, we used type strains of the related species to perform 16S rRNA

alignment trees, which has been the primary reference for bacterial phylogeny [61]. We found

close phylogenetic relationship between bacteria identified in this study (Figs 4 and 5) with

those previously isolated from midguts of N. viridula in Brazil [24]. Some of our isolates are

closely related to others previously identified as K. pneumoniae, [24] our identification (includ-

ing MALDI-TOF identification) suggest that the isolated bacteria are Yokenella sp. rather than

K. pneumoniae (Fig 4). Some biochemical tests also would discard them as klebsiellas, but we

do not have access to the microorganisms previously isolated. Different Enterococcus sp identi-

fied in our study are also closely related to those identified in Brazil (Fig 6). However, our dis-

crimination among the different enterococci may not be sensitive enough. It is possible that

Yokenella sp. and Enterococcus sp. might have been associated to N. viridula probably during

migration from equatorial regions of Brazil to southern fields in Argentina or through a close

interaction with soybean, explaining the presence of the bacterium species in the gut of stink

bugs. Yokenella sp. has also been associated to the firebug (Pyrrhocoris apterus; Hemiptera,

Pyrrhocoridae), a common cotton pest in Europe [62]. In addition, we isolated and identified

Pantoea sp. from guts of stinkbugs collected from two different sites (Fig 5 and Table 1), which

to our knowledge has never been identified in stinkbugs before. This bacteria has been previ-

ously isolated from different environmental samples (e.g., water, soil, plant material) and

insects, including mosquitoes (Diptera), thrips (Thysanoptera), bees (Hymenoptera), and

hemipterans [55], suggesting that this gram negative rod has a wide ecological distribution.

Our study showed that N. viridula adults feed on many different hosts, and suggested a

strong association between gut bacterial community and plant hosts (Fig 2). Field surveys

showed that adults of N. viridula feed on soybean crops, in winter move to Eucalyptus trees to

spend diapause, and then in spring start to feed on different SH such as, mulberry (Morus
nigra L.), passion flower (Passiflora sp.), honey locust (Acacia megaloxylon) and some crops

like, maize (Zea mays), rapeseed (Brassica napus), wheat (Triticum aestivum) (Fig 1). Eucalyp-
tus trees unable the insect to adapt to non-tropical regions, as they are used for sheltering

during cold winters [6,63,64]. Although secondary hosts are not suitable for correct nymph

development, they allow adults emerging from diapause to obtain resources to begin a new

cycle [65–67]. Since between 17% and 26% of stinkbugs collected in the field from all hosts

contain NTM in the midgut (Fig 2), NTM may help N. viridula to tolerate plant defenses and

feed on different hosts. Enterobacteria and enterococci that infected the midgut of N. viridula
may change the biochemical environment of guts, improving digestibility trough inactivation

of protease inhibitors and other antinutrients. However, the small number of stinkbugs
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infected with NTM could indicate possible detrimental effects of these bacteria over the insect.

Future work will focus on the effects of Enterobacteriaceae and Enterococcus midgut coloniza-

tion on N. viridula.
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