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Abstract 

Background:  The single-step covariance matrix H combines the pedigree-based relationship matrix A with the 
more accurate information on realized relatedness of genotyped individuals represented by the genomic relationship 
matrix G. In particular, to improve convergence behavior of iterative approaches and to reduce inflation, two weights 
τ and ω have been introduced in the definition of H−1, which blend the inverse of a part of A with the inverse of G . 
Since the definition of this blending is based on the equation describing H−1, its impact on the structure of H is not 
obvious. In a joint discussion, we considered the question of the shape of H for non-trivial τ and ω.

Results:  Here, we present the general matrix H as a function of these parameters and discuss its structure and prop‑
erties. Moreover, we screen for optimal values of τ and ω with respect to predictive ability, inflation and iterations up 
to convergence on a well investigated, publicly available wheat data set.

Conclusion:  Our results may help the reader to develop a better understanding for the effects of changes of τ and 
ω on the covariance model. In particular, we give theoretical arguments that as a general tendency, inflation will be 
reduced by increasing τ or by decreasing ω.
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Background
A genomic relationship matrix G provides information 
on the realized relatedness of individuals but requires 
genotyping, which increases the costs of breeding pro-
grams. Thus, breeders are often confronted with the 
situation that not all individuals for which expected 
relatedness can be derived from the pedigree are geno-
typed. The single-step approach [1–3] is a practical way 
to combine these two different sources of information—
the pedigree relationship matrix A and the genomic rela-
tionship matrix G—in one matrix H. This relationship 
matrix H relates all individuals as does A, but incorpo-
rates the more accurate information provided by G. Here, 

the central concept is to substitute entries of A by the 
corresponding entries of G and to adapt the remaining 
relationships accordingly. In more detail, the matrix H is 
defined by

Here, the individuals are divided into two groups: Group 
1 contains the individuals whose genotype is not avail-
able and Group 2 consists of the genotyped individuals. 
Thus, A11 denotes the entries of A that provide the rela-
tionships within Group 1, A12 and A21 the relationships 
between the individuals of the two groups, and A22 the 
pedigree relationships within Group 2. Moreover, A−1

22  
denotes the inverse of A22, which is not in general identi-
cal to the bottom-left block of A−1, i.e. (A−1

)22. With this 
definition, we have substituted the inner group pedigree 

(1)

H := A +

(

A12A
−1

22
(G− A22)A

−1

22
A21 A12A

−1

22
(G− A22)

(G− A22)A
−1

22
A21 (G− A22)

)

.
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relationship of Group 2 by the genomic relationship, 
which means H22 = G. The terms A12A

−1
22 (G− A22) 

adapt the relationships within Group 1 and the relation-
ships between individuals of the two groups according 
to the changed relationships within Group 2 to generate 
a positive semi-definite, valid covariance structure (this 
transfer of information can be also interpreted in terms 
of imputation [4, 5]).

Since many applications use the inverse of a relation-
ship matrix, Eq.  (1) is usually written on the level of its 
inverse (see [3] and equations 18, 19 of [6]):

Based on this setup, several previous papers have dis-
cussed the question of how to combine A and G opti-
mally. In this context, approaches which have been 
followed adapt G to A [7, 8] or conversely A to G [8–10]. 
Moreover, two scaling factors τ and ω have been intro-
duced [11, 12]:

The main purposes of the introduction of these param-
eters were to ensure convergence of iterative approaches 
that address the mixed models [11], and to reduce infla-
tion of predictions [13]. Compared to methods based 
on A or G alone, these issues have been assumed to be 
enhanced by inconsistencies between A and G [14], and 
this blending is one possibility among several to approach 
the problem [15].

Equation  (3) is defined on the level of H−1
τ ,ω, but the 

effect of the introduction of ω and τ on the shape of H 
is not obvious. In particular, breeders aiming at imple-
menting the single-step method in breeding programs 
raised the question of how these parameters affect the 
relationship model Hτ ,ω. Here, we present Hτ ,ω in a gen-
eral form, as a matrix dependent on τ and ω and discuss 
some of its properties. Moreover, we provide arguments 
for a reduction in inflation of predicted breeding values 
being expected when τ increases or when ω decreases. 
Finally, to set a contrast to the widely used cattle data 
[12, 13, 16, 17], we screened for optimal values of τ and ω 
with respect to predictive ability, inflation and iterations 
to convergence on a well investigated, publicly available 
wheat data set [18]. Our results may help to develop an 
understanding for the effects on the covariance model 
when these parameters are changed. In particular, this 
may be of interest for people who aim at implementing 
the single-step method with non-trivial parameters τ and 
ω in practical breeding programs.

(2)H−1
= A−1

+

(

0 0

0 (G−1
− A−1

22 )

)

.

(3)H−1
τ ,ω := A−1

+

(

0 0

0 (τG−1
− ωA−1

22 )

)

.

Hτ ,ω and some particular choices of τ and ω
We will first describe Hτ ,ω and discuss some special 
cases. Mathematical arguments for the presented state-
ments are provided in the “Appendix”. If an inverse of a 
matrix is used, the implicit assumption on invertibility is 
made (also if not mentioned explicitly). In particular, A is 
considered invertible on account of its construction from 
the pedigree (granted clones are absent) [19].

Central statement  The inverse of H−1
τ ,ω defined by 

Eq. (3) is

with

The structure of Eq.  (4) is identical to that of Eq.  (1), 
but with G substituted by Eq.  (5). Considering H22, we 
see that the parameterization of the weights ω and τ is 
“reverse” in the sense that τ and ω appear with opposite 
signs in front of them. In particular, this implies that Hτ ,ω 
is not necessarily positive semi-definite when ω > 1 since 
this leads to a negative factor for A−1

22  and thus has to be 
compensated by τG−1 to give a positive semi-definite 
matrix. However, positive semi-definiteness of Hτ ,ω is 
guaranteed, if G and A are positive definite and τ ≥ 0 and 
ω ≤ 1, but not both at their boundary, that is not τ = 0 
and ω = 1 at the same time.

Lemma 1  Let A and G be positive definite and let τ ≥ 0 
and ω ≤ 1, but not τ = 0 = 1− ω. Then Hτ ,ω is positive 
semi-definite.

Note that due to the “reverse parameterization” in form 
of weights (1− ω) and τ in Eq. (5), the sets of parameter 
values, which guarantee positive semi-definiteness of the 
single-step matrix Hτ ,ω, are distinct. If both τ and (1− ω) 
are positive, then positive semi-definiteness of Hτ ,ω is 
guaranteed. In particular, this also means that a negative 
ω gives a valid covariance model. Thus, a grid to test com-
binations would be rather within (τ ,ω) ∈ [0, 2] × [−1, 1] 
than (τ ,ω) ∈ [0, 2] × [0, 1], which has often been the 
frame for the choice of parameters [13, 16, 17].

In the following, we will discuss special choices of τ and ω.

(i)		 If τ = ω = 1, we are dealing with the original single-
step method of Eq. (2).

(4)

Hτ ,ω = A +

(

A12A
−1

22
(H22 − A22) A

−1

22
A21 A12A

−1

22
(H22 − A22)

(H22 − A22) A
−1

22
A21 (H22 − A22)

)

(5)H22 =

(

τG−1
+ (1− ω)A−1

22

)

−1
.
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(ii)	 If τ = ω = 0, then H22 = A22 and thus H = A.
(iii)	If ω = τ = � > 0, then 

H22 =

(

�G−1
+ (1− �)A−1

22

)

−1
.

(iv)	 If ω = 1, then H22 = τ
−1G.

(v)	 If τ = 1, then H22 =

(

G−1
+ (1− ω)A−1

22

)

−1
.

Case (i) is already obvious on the level of H−1, but it can 
also be seen on the level of Hτ ,ω that Eq. (4) coincides in this 
case with Eq. (1), since H22 = G. If instead τ = ω = 0 as for 
case (ii) then H0,0 = A and the single-step BLUP becomes 
the traditional pedigree-BLUP. Also note that case (iii), for 
which τ and ω are equal, has already been addressed in [3] 
and results in a weighted harmonic mean of G and A22.

In case (iv) in which ω is equal to 1, H22 = τ
−1G . 

With increasing τ, the entries of H12, H21, H22 will 
shrink towards 0 and H11 to the Schur complement 
A/A22 := A11 − A12A

−1
22 A21.

In case (v), we see that if we fix τ = 1, H22 is not sig-
nificantly simplified. Moreover, since the weighted sum 
of A−1 and G−1 is inverted in H22, the factor (1− ω) 
may also introduce a weight on the entries of G. We see 
that this is indeed the case with the following example. 
Choosing (τ ,ω) = (1, 0.5),

In this example, the non-diagonal elements of A22 are 0, 
but the non-diagonal elements of H22 deviate from the 
corresponding entries of G which are equal to 1. Thus, ω 
cannot be interpreted as being only a weight of the pedi-
gree contribution A22 to the covariance H22.

The effect of τ and ω on inflation
A main purpose of the introduction of these parameters 
is the reduction of inflation of the predicted breeding 
values [13, 16] which is manifested and diagnosed by a 
slope b < 1 in a regression of observed values (y-axis) on 
predictions (x-axis). Please recall here that the regres-
sion of observed values on predictions should be pre-
ferred to a regression of predictions on observed values 
for model evaluation [20]. We will argue why—as a gen-
eral tendency—increasing τ or decreasing ω may lead to a 
reduced inflation.

In many models used for animal and plant breeding, 
the genetic component g is modeled as a random vari-
able with multivariate normal distribution, zero mean 
and structured variance, for instance given by σ 2

gHτ ,ω in 
single-step. The simplest version without a fixed effect 
can be written as:

with G =

(

2 1
1 2

)

, and A22 =

(

1 0
0 1

)

,

gives H22 =

(

0.933 0.266

0.266 0.933

)

.

where y denotes the n× 1 vector of phenotypes, 
g ∼ N(0, σ 2

gHτ ,ω) the genetic effect and ǫ ∼ N(0, σ 2
ǫ
In) 

the independent and identically distributed errors. The 
best linear unbiased prediction (BLUP [19, 21]) for this 
g is given by

We will apply some results on positive semi-definite 
matrices to this model and its BLUP to show when a 
change in the values of τ and ω (to τ ′ and ω′) reduces the 
variance of the estimate of the genetic component. In the 
following, we use the partial order on the positive semi-
definite matrices (the so-called Löwner order [22]), to 
speak about variance “increase” and “reduction” in a mul-
tivariate context. For two positive semi-definite matri-
ces K1 and K2, K1 � K2 if and only if K1 − K2 is positive 
semi-definite. With this notation, K1 � 0 means that K1 
is positive semi-definite. For a reference on the properties 
of the Löwner order see [23].

Lemma 2  Let A and G be positive definite and Hτ ,ω as 
introduced.

(a)	 Let τ ≤ τ
′ and ω ≥ ω

′ be given such that 
(

Hτ ,ω

)

22
� 0 �

(

Hτ
′,ω′

)

22
 . Then 

(b)	 Moreover, 

(c)	 For two matrices of the shape of the BLUP solution 
of Eq. (7) 

 with a � > 0, we have 

Lemma  2(a) illustrates that if we keep τ constant and 
decrease ω to ω′, the resulting matrix 

(

Hτ ,ω′

)

22
 will be 

“smaller” with respect to the Löwner order. The same is 
true if we keep ω constant and increase τ to τ ′. Part (b) 
transfers this observation to the level of Hτ ,ω. Finally, part 
(c) connects Hτ ,ω with the BLUP of model (6).

We now illustrate how this reduction with respect 
to the Löwner order, transfers to the variance of 

(6)y = g + ǫ,

(7)ĝ =

(

I+
σ
2
ǫ

σ
2
g

H−1
τ ,ω

)

−1

y.

(

Hτ ,ω

)

22
�

(

Hτ
′,ω

)

22
�

(

Hτ
′,ω′

)

22

and
(

Hτ ,ω

)

22
�

(

Hτ ,ω′

)

22
�

(

Hτ
′,ω′

)

22

.

(

Hτ ,ω

)

22
�

(

Hτ
′,ω′

)

22
⇐⇒ Hτ ,ω � Hτ

′,ω′ .

K1 :=

(

I+ �H−1
τ ,ω

)

−1
and K2 :=

(

I+ �H−1
τ
′,ω′

)

−1
,

Hτ ,ω � Hτ
′,ω′ ⇐⇒ K1 � K2.



Page 4 of 9Martini et al. Genet Sel Evol  (2018) 50:16 

breeding value estimates ĝ in this simple model of 
ĝ :=

(

I+ �H−1
τ ,ω

)

−1
y.

Proposition 1  Let K1 � K2, K1K1 � K2K2, and let 
ĝi := Kiy be the corresponding estimate of the breeding 
values. Moreover, let the empirical mean of both estimates 
be the same E(ĝ1) = E(ĝ2) and let Var(ĝi) denote the 
empirical variance of the vector ĝi, defined by

Then

Proposition  1 illustrates that an important effect of 
using an ω smaller than 1, or a τ larger than 1 may be the 
reduction of the variance of the predicted genetic values. 
To see this, recall that Lemma  2(a) and (b) stated that 
reducing ω to ω′ and keeping τ fixed implies Hτ ,ω � Hτ ,ω′ . 
The same is true for increasing τ to τ ′ with fixed ω. 
Lemma  2(c) then implies that K1 � K2. Thus, provided 
that all preconditions are given, Proposition 1 states that 
the variance of the estimated breeding values is reduced.

The critical assumption is K1K1 � K2K2, since this is 
not implied by K1 � K2 (for a counter example see [24]). 
Thus, this will not be totally satisfied in practice. Instead, 
because we are dealing with a partial order, often neither 
K1K1 � K2K2 nor K2K2 � K1K1 will hold, but the dif-
ference of the two products may result in an indefinite 
matrix (i.e. one with both positive and negative eigen-
values). However, if only a few eigenvalues of the differ-
ence K1K1 − K2K2 are smaller than zero, this assumption 
will be correct to a good approximation. Moreover, also 
the assumption of E(ĝ1) = E(ĝ2) will only approximately 
hold in practice. Finally, recall that the variance compo-
nents are usually estimated and an adapted estimate can 
compensate the effects of changes of the parameters τ 
and ω.

We will give an example of how a reduced empirical 
variance may reduce inflation.

Example 1 Let y be a vector of measured data and 
g1 := K1y with K1 � 0. Moreover, let g2 := 0.5K1y which 
means K2 = 0.5K1. Then K1 � K2 and K1K1 � K2K2 and 
Var(g2) = 0.25Var(g1).

Defining the inflation as b of an ordinary least squares 
regression of y on g

1

n

n
∑

j=1

ĝ2i,j − E(ĝi)
2.

Var(ĝ1) ≥ Var(ĝ2).

y = α + bg + ǫ

gives b2 = Cov(y,g2)
Var(g2)

=

0.5
0.25b1 = 2b1. Note here that a 

value of b > 1 means that the estimates of the breeding 
values are deflated and b < 1 that they are inflated. Thus 
b2 > b1 > 0 means that the inflation is reduced when K2 
is used instead of K1.

Example  1 illustrates that the reduced variance of the 
predicted genetic values may reduce inflation. It is worth 
highlighting that the scaling factor used in this example 
was formulated on the level of Ki which does not simply 
translate to a scaled variance component for Hτ ,ω. In the 
next section, we give a small example with a well investi-
gated wheat data set [18].

An example with wheat data
We assessed predictive ability, inflation and number of 
iterations up to convergence with varying parameters τ 
and ω on a publicly available wheat data set [18, 25]. The 
aim was to seek for the optimal combinations of both 
parameters, which maximize the predictive ability or 
minimize the inflation or the number of iterations to con-
vergence, respectively. Moreover, we were interested in 
the general behavior of inflation when τ and ω are varied.

Data
The data set which we used consists of 599 CIMMYT 
wheat lines, genotyped with 1279 Diversity Array Tech-
nology markers indicating whether a certain allele is pre-
sent (1) or not (0) in the respective line. The lines were 
grown in four different environments and grain yield was 
recorded for each line and each environment (for more 
details see [18]). We used only the phenotypic data of 
environment 1 for our comparisons. To see whether the 
choice of which lines are considered as (not) genotyped 
has a significant impact on properties of the single-step 
procedure, we split the lines into two parts according 
to the order in the data set and considered two scenar-
ios: In scenario 1 (hereinafter referred to as SC1), lines 
1 to 300 were treated as not genotyped and the remain-
ing lines 301 to 599 were used as genotyped group. Thus, 
the pedigree relationship of lines 301  to  599 represents 
A22 and their genomic relationship represents G. The 
genomic relationship matrix was calculated according to 
VanRaden [26]: G = (Z− P)(Z− P)T /

∑p
j=1 pj(1− pj), 

with Z denoting the n× p matrix giving the states of the 
p markers of the n individuals, and P denoting the matrix 
with identical rows giving the column averages of Z. The 
same procedure was repeated in scenario 2 (hereinafter 
referred to as SC2) but the genotyped group consisted of 
lines 1 to 300. Note again that the order was used as pro-
vided by the data set.



Page 5 of 9Martini et al. Genet Sel Evol  (2018) 50:16 

Parameter grid
To seek for the optimal values for both parameters, 420 
combinations of τ and ω were tested for each scenario. 
This number of combinations resulted from varying 
both parameters on a grid defined by 0.10 steps divid-
ing the interval [−1, 1] for ω, or [0.1,  2] for τ. To evalu-
ate the performance of each parameter combination, we 
constructed H−1

τ ,ω by Eq.  (3) for each combination of the 
parameters. Consequently, 420 different H−1

τ ,ω matrices 
were calculated in R [27] and transferred to the blupf90 
software [28] to estimate the breeding values using the 
single-step procedure.

Evaluation of the prediction
To evaluate the predictions obtained with the differ-
ent matrices, a cross-validation was run by partitioning 
the 599 wheat lines into 10 disjoint groups of approxi-
mately 60 lines each (regardless of whether their genomic 
information had been used in the single-step covariance 
matrix). The partitions used were those provided with the 
data set, which had been generated randomly [18]. Itera-
tively, each group was used as a test set and models were 
fit with the remaining lines. Prediction quality was evalu-
ated for these 60 lines in terms of predictive ability and 
inflation. The former was measured as Pearson’s correla-
tion between the phenotype and the estimated breeding 
value (EBV) for the test set. Inflation was calculated as 
the coefficient of regression of the phenotype on the EBV 
(for the test set). The optimal combination of parameter 

values should have a regression coefficient close to 1 (nei-
ther inflation nor deflation). The number of iterations to 
convergence was also recorded.

Results
Figure 1 illustrates the average predictive ability obtained 
for different choices of (τ ,ω) for the two different sce-
narios SC1 and SC2. The pedigree BLUP predictive 
ability is given by (τ ,ω) = (0, 0). The closest here is 
(τ ,ω) = (0.1, 0) with a predictive ability of 0.46 for the 
first scenario and 0.43 for the second one and which is 
in accordance with the value of 0.448 originally reported 
[18]. The maximum predictive ability for SC1 was 
obtained with (τ ,ω) = (1.8, 0.2) whereas in SC2 it was 
reached with (τ ,ω) = (0.4,−1.0). The location of the 
maximum differs, but in both scenarios we observe a 
broad optimum, that is a plateau on which the predictive 
ability hardly changes. An important observation is that 
the maximal predictive ability is very different between 
the two scenarios (0.53 vs. 0.45).

Figure 2 shows the mean inflation for each considered 
(τ ,ω) combination for the two scenarios. The combina-
tions with the lowest inflation, that is the highest regres-
sion coefficient b were (τ ,ω) = (2,−1) in both scenarios, 
as suggested by our theoretical results. We see the ten-
dency that both, increasing τ or decreasing ω reduces 
inflation in the sense of increasing b. However, note that 
in our example, we are already in a situation of deflation 

Fig. 1  Heat plots for predictive ability calculated as the Pearson’s correlation between phenotype and EBV for each combination of parameters τ 
and ω for a SC1 and b SC2. The lighter the colour, the higher the predictive ability of the corresponding (τ ,ω) combination
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and reducing the variance of ĝ increases the predictive 
bias.

Lastly, the optimal values of the parameters in terms 
of a minimal number of iterations to convergence were 
(τ ,ω) = (1.9, 0.8) for SC1 and (τ ,ω) = (1.0,− 0.8) for 
SC2. However, for most combinations, the number of 
iterations was between 26 and 32 which indicates that the 
influence of (τ ,ω) on the number of iterations required is 
limited for this data set (results not shown).

Discussion
Here we presented the general form of the single-step 
relationship matrix Hτ ,ω, when blending parameters τ 
and ω are defined on the level of its inverse [11, 12]. The 
matrix obtained (Eq.  4) is similar to the original single-
step relationship matrix (Eq.  1) but with the role of G 
replaced by expression Eq.  (5). Moreover, we discussed 
some special choices of these parameters including the 
case for which τ and ω are equal, which was also the first 
adjustment of H discussed in the literature [3].

The reduction in inflation was one of the main motiva-
tions for using the blending parameters [13, 16]. We illus-
trated with theoretical considerations that increasing τ or 
decreasing ω tends to reduce the empirical variance of ĝi, 
which again may lead to a reduced inflation. Our theoreti-
cal arguments are limited by their assumptions, but should 
hold to a good approximation. To reinforce these results 
with an empirical exploration, we gave a small example with 
a well investigated wheat data set [18]. There, the pattern 

observed for inflation was largely in accordance with what 
we expected from our theoretical considerations. With 
regard to predictive ability, the parameters showed broad 
optimality and varied strongly across the two scenarios SC1 
and SC2. Both observations may be data set specific and 
the latter a consequence of the small population size.

Finally, note that similar effects on inflation can also be 
achieved with other methods as for instance by explic-
itly reducing the additive variance or by accounting for 
inbreeding [5] (see in this context also Example 1). It may 
be worth considering the single-step method in more 
detail from a theoretical perspective to address the causes 
of inflation. Recent studies reported results in this direc-
tion by for instance attributing inflation to inconsisten-
cies between genomic and pedigree relationships and by 
suggesting that accounting for inbreeding and unknown 
parent groups in a proper way may reduce this problem 
[5]. Moreover, it has also been highlighted that selective 
genotyping and selective imputation may have an impact 
on the properties of ssBLUP [29].

Conclusion
We provided theoretical arguments that increasing τ or 
decreasing ω may mainly decrease inflation by decreas-
ing the variance of the estimated breeding values ĝ. Alter-
native solutions that address the problems of single-step 
predictions from a more theoretical point of view may be 
found by investigating the consistency problems of A and 
G with respect to scaling and coding further.

Fig. 2  Heat plots for inflation calculated as the slope in the regression of observed phenotypes on predictions for a SC1 and b SC2. The lighter the 
colour, the higher the slope and lower the inflation



Page 7 of 9Martini et al. Genet Sel Evol  (2018) 50:16 

Authors’ contributions
ECGP posed the research questions and defined the main content; JWRM, 
MFS and CAGB calculated the theoretical results, performed the analysis of the 
wheat data set and wrote the manuscript; all authors discussed the structure 
of Hτ ,ω, the special choices of the parameters and the content of the manu‑
script. All authors read and approved the final manuscript.

Author details
1 KWS SAAT SE, Einbeck, Germany. 2 Departamento de Producción Animal, 
Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina. 
3 Institute of Animal Breeding, Bavarian State Research Center for Agriculture, 
Poing‑Grub, Germany. 4 CONICET, Buenos Aires, Argentina. 5 Facultad de Cien‑
cias Veterinarias, IGEVET - Instituto de Genética Veterinaria (UNLP-CONICET 
LA PLATA), La Plata, Argentina. 6 INPA, UBA-CONICET, Buenos Aires, Argen‑
tina. 7 Animal Breeding and Genetics Group, Center for Integrated Breeding 
Research, University of Goettingen, Goettingen, Germany. 8 National Engineer‑
ing Research Center for Breeding Swine Industry, Guangdong Provincial Key 
Lab of Agro‑animal Genomics and Molecular Breeding, College of Animal 
Science, South China Agricultural University, Guangzhou, China. 

Acknowledgements
JWRM thanks KWS SAAT SE for financial support. Moreover, we thank the 
DAAD for financial support in the context of the exchange program 57335814 
“Genomic selection and measures of kinship”. We also thank two unknown 
reviewers for their valuable comments. In particular, we would like to credit one 
of them for the simplified approach to prove the central statement. Finally, we 
acknowledge support by the Open Access Publication Funds of the University of 
Göttingen.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Appendix
Derivation of Hτ ,ω

Given that we know that Eq. (1) is the inverse of Eq. (2), 
we define

Then, we can rewrite Eq. (3) as

H−1
22 :=

(

τG−1
+ (1− ω)A−1

22

)

(8)
H

−1

τ ,ω : = A
−1

+

(

0 0

0 (τG
−1

− ωA
−1

22
)

)

= A
−1

+

(

0 0

0 (H
−1

22
− A

−1

22
)

)

The right-hand side has the structure of Eq.  (2), and 
thus plugging H22 at the corresponding positions of G in 
Eq. (1) gives Eq. (4).�  �

Lemma 1: positive semi‑definiteness of Hτ ,ω

For a block-partitioned matrix:

We recall that if M22 is non-singular, then the matrix 
M11 −M12M

−1
22 M21 is called the Schur complement of 

M22 in M and denoted as M/M22. The Schur complement 
has interpretations as a conditional covariance matrix, 
and possesses useful properties [30]. In particular, Theo-
rem 1.12(b) of the book by Zhang [31] states that for M22 
non-singular

Here, ≻ and � denote positive (semi-)definiteness. Now, 
consider H/H22,

As A � 0, Eq.  (9) states that A/A22 = H/H22 � 0, and 
thus H � 0 ⇐⇒ H22 ≻ 0, which in turn is the case when 
τ ≥ 0 and ω ≤ 1, but not τ = 0 = 1− ω, due to the pre-
supposed positive definiteness of G and A22.�  �

Lemma 2: variance reduction with varying τ and ω
To prove (a), we consider the case of τ ≤ τ

′ and ω = ω
′. 

The case of τ = τ
′ and ω ≥ ω

′ is analogous. We will need 
at several steps the properties of positive semi-definite 
matrices and the partial order “�” (c.f. [23]).

M =

[

M11 M12

M21 M22

]

(9)M � 0 ⇐⇒ (M22 ≻ 0 andM/M22 � 0)

H/H22 = H11 −H12H
−1

22
H21

= A11 + A12A
−1

22
(H22 − A22)A

−1

22
A21

−H12H
−1

22
H21

= A11 + A12A
−1

22
(H22 − A22)A

−1

22
A21

− A12A
−1

22
H22A

−1

22
A21

= A11 + A12A
−1

22
(H22 − A22 −H22)A

−1

22
A21

= A11 − A12A
−1

22
A21

= A/A22

(

Hτ ,ω

)

2,2
�

(

Hτ
′,ω

)

2,2
⇐⇒

(

τG
−1

+ (1− ω)A
−1

22

)

−1

�

(

τ
′

G
−1

+ (1− ω)A
−1

22

)

−1

⇐⇒

(

τG
−1

+ (1− ω)A
−1

22

)

�

(

τ
′

G
−1

+ (1− ω)A
−1

22

)

⇐⇒ τG
−1

� τ
′

G
−1

⇐⇒ τ
′

− τ ≥ 0

⇐⇒ τ
′

≥ τ
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To prove (b), we first write Hτ ,ω as 
A +WT

((H22)τ ,ω − A22)W with

Then

To see ∗, recall that positive semi-definiteness of a 
matrix A is defined by ∀y : yTAy ≥ 0. Define ỹ := Wy 
to prove “⇒”. Conversely, to prove “⇐”, we need to 
show that WT

(H22)τ ,ωW � WT
(H22)τ ′,ω′W implies 

(H22)τ ,ω � (H22)τ ′,ω′. This is true, since the rank of W is 
the number of genotyped individuals n2 (due to I being 
included in the definition of W). This means that for any 
chosen y ∈ R

n2, we find an inverse image ỹ ∈ R
n1+n2 

such that y = Wỹ. Thus, for any y, use the representa-
tion ỹTWT

(H22)τ ,ωWỹ ≥ ỹTWT
(H22)τ ′,ω′Wỹ to get 

yT (H22)τ ,ωy ≥ yT (H22)τ ′,ω′y.
To prove (c), we consider:

� �

Proposition 1: reducing the empirical variance of the 
predicted genetic values
Let us define the empirical variance of vector 
ĝi = (ĝi,j)j=1,...,n by

To show that

we have to show that

which reduces to

W =

[

A−1
22 A21 I

]

(H22)τ ,ω � (H22)τ ′,ω′

∗

⇐⇒W
T
(H22)τ ,ωW � W

T
(H22)τ ′,ω′W

⇐⇒ A +W
T
(H22)τ ,ωW � A +W

T
(H22)τ ′,ω′W

⇐⇒ Hτ ,ω � Hτ
′,ω′

Hτ ,ω � Hτ
′,ω′ ⇐⇒ H−1

τ ,ω � H−1
τ
′,ω′

⇐⇒ I+ �H−1
τ ,ω � I+ �H−1

τ
′,ω′

⇐⇒ (I+ �H−1
τ ,ω)

−1
� (I+ �H−1

τ
′,ω′

)
−1

⇐⇒ K1 � K2

Var(ĝi) : =
1

n

n
�

j=1



ĝi,j −
1

n

n
�

j=1

ĝi,j





2

=

1

n

n
�

j=1

ĝ2i,j − E(ĝi)
2

Var(ĝ1) ≥ Var(ĝ2)

1

n

n
∑

j=1

ĝ21,j − E(ĝ1)
2
≥

1

n

n
∑

j=1

ĝ22,j − E(ĝ2)
2,

since the empirical means are assumed to be identical. 
Using the definition of ĝi gives

n
∑

j=1

ĝ21,j ≥

n
∑

j=1

ĝ22,j

which is true due to the initially made assumption of 
K1K1 � K2K2.�  �
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