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Abstract: Accurately assessing terrestrial gross primary productivity (GPP) is crucial for
characterizing the climate-carbon cycle. Remotely sensing the photochemical reflectance index (PRI)
across vegetation functional types and spatiotemporal scales has received increasing attention for
monitoring photosynthetic performance and simulating GPP over the last two decades. The factors
confounding PRI variation, especially on long timescales, however, require the improvement of PRI
understanding to generalize its use for estimating carbon uptake. In this review, we summarize
the most recent publications that have reported the factors affecting PRI variation across diurnal
and seasonal scales at foliar, canopy and ecosystemic levels; synthesize the reported correlations
between PRI and ecophysiological variables, particularly with radiation-use efficiency (RUE) and
net carbon uptake; and analyze the improvements in PRI implementation. Long-term variation of
PRI could be attributed to changes in the size of constitutive pigment pools instead of xanthophyll
de-epoxidation, which controls the facultative short-term changes in PRI. Structural changes at
canopy and ecosystemic levels can also affect PRI variation. Our review of the scientific literature on
PRI suggests that PRI is a good proxy of photosynthetic efficiency at different spatial and temporal
scales. Correcting PRI by decreasing the influence of physical or physiological factors on PRI greatly
strengthens the relationships between PRI and RUE and GPP. Combining PRI with solar-induced
fluorescence (SIF) and optical indices for green biomass offers additional prospects.

Keywords: gross primary productivity (GPP); radiation-use efficiency (RUE); photochemical
reflectance index (PRI); affecting factors; spatiotemporal scales

1. Introduction

Terrestrial gross carbon uptake, expressed as gross primary productivity (GPP), and its response
to climatic changes play a key role in projections of future carbon cycles and climate [1,2]. Increasing
attention has been concentrated on accurately and continuously quantifying and modeling GPP over
large regions and long timescales [3–5]. Observations of vegetation primary productivity in situ,
and empirical [6] or process-based [1,7] models have been successfully used to estimate the global
distribution of GPP. These measurements, however, rarely provide high-quality data and contain errors
originating from the uncertainties of field work, which impede a comprehensive understanding of the
global terrestrial carbon cycle [2,7].
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Remotely sensing carbon uptake provides a unique opportunity for extending the spatial coverage
of carbon fluxes [2,8–11]. The quantification of GPP variation by remote-sensing techniques is generally
based on a model of radiation-use efficiency (RUE) [12,13]. This model mainly considers the absorbed
photosynthetically active radiation (APAR) and the actual photochemical efficiency [12,13]. APAR has
been extensively analyzed and is usually derived from vegetation indices of greenness such as the
normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) [10,14–17].
The remote sensing of RUE, however, has been less extensively analyzed, perhaps because it is
influenced by many factors [10,18–20].

RUE is commonly remotely estimated using the photochemical reflectance index (PRI), which is
a proxy of ecophysiological parameters linked to the competition between energy dissipation and
photochemical conversion [11,18–23]. Reflectance at 531 nm rapidly decreases in response to
the dissipation of excess energy by xanthophyll de-epoxidation due to an increase in zeaxanthin
concentration and to chloroplast shrinkage following an increase in thylakoid ∆pH, which is insensitive
to short-term changes at 570 nm [18,19]. PRI is thus defined as (R531 − R570)/(R531 + R570), where R
is the reflectance and the numbers are central wavelengths of narrow bands in nanometers. The remote
sensing of photosynthetic performance and plant stress has advanced considerably over the last
two decades [9,11,20,24], with tower- [25], aircraft- [26,27] and satellite- [9,28–31] based PRI at both
short (hours to days) and long (days to seasons) terms since Gamon, Peñuelas and Field [18] and
Peñuelas et al. [19] proposed this reflectance index. The short-term change in PRI associated with
the xanthophyll cycle, as proposed by Gamon et al. [18] and Peñuelas et al. [19], is able to track
photosynthetic performance and RUE, the actual or maximum photochemical efficiency of photosystem
II (PSII) and non-photochemical quenching (NPQ) over a wide range of species, plant functional types
and nutrient levels at foliar, canopy and ecosystemic levels under various stress conditions (e.g., water
shortage, nutrient levels, disease and contamination) [19,20,23,28,32–46]. PRI has also been useful for
studying aquatic vegetation [47], mosses [48–50] and lichens [51]. Photosynthetic activation can be
efficiently tracked by PRI, particularly during special seasonal periods of alteration such as spring
recovery in coniferous [52–55], and across years in boreal deciduous forests [56], Mediterranean
holm-oak forests [29] and shrubland [22]. PRI obtained from MODIS (Moderate Resolution Imaging
Spectroradiometer) [25,29,56–58], AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) [59]
and CHRIS/PROBA (Compact High Resolution Imaging Spectrometer launched aboard the Proba
satellite) [60] can also track changes in photosynthetic performance and primary productivity at larger
spatial scales. The rapid changes in carbon uptake for evergreen vegetation in densely vegetated
areas have been captured by PRI, but not by widely used greenness indices such as NDVI which can
be saturated due to stabilized canopy greenness [20,28,39,61–63]. PRI, a narrow-band spectral index
as a proxy of ecophysiological parameters based on the changes in energetic status thus provides
a quick, simple, nondestructive, labor-saving and cost-efficient means of optical sampling for exploring
interactions of plant-ecosystem carbon fluxes and for promisingly monitoring and mapping RUE/GPP
at larger spatiotemporal scales [11,20,64–66].

Several studies, however, have shown that PRI can be affected by solar angle, illumination,
canopy structure, atmosphere, pigments and soil background [10,11,20,23,54,67–75]. Additionally,
the interpretation of PRI becomes more difficult for mixed species or landscapes with varying canopy
fractions [76,77], although several studies have reported correlations between PRI and photosynthetic
performance [34,35,78,79]. The variation in PRI also depended on the site difference caused by
vegetation types and canopy structure [62,77], which generally affected the PRI-RUE relationships.
Much of the long-term variation in PRI and its tracking of carbon assimilation has recently been
attributed to changes in the sizes of constitutive (slow) pigment pools that also impacted long-term
tracking of carbon assimilation by PRI [23,54,55,67,76]. However, such studies have not been expanded
to a wide range of species and sites, so the physiological mechanism of long-term PRI variation still
remains to be clearly understood. Furthermore, the not yet resolved physiological mechanism of PRI
and its high sensitivity to various extraneous effects might impede the evaluation of photosynthetic
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performance, when scaling up from foliar to canopy, and ultimately, landscape and global scales [24].
Even so, recent findings of links between RUE/GPP and PRI and the integration of PRI with other
parameters such as foliar pigments [80], solar-induced fluorescence (SIF) [81] or vapor-pressure deficit
(VPD) [77] may provide new opportunities for the continuous assessment of carbon uptake.

In a review of the literature, Garbulsky et al. [20] found that PRI was significantly correlated with
RUE and other relevant ecophysiological variables across vegetation types and spatiotemporal scales.
The consistent relationships with RUE-PRI at different spatiotemporal scales were summarized by
synthetic analyses of publications from 1992 to 2009. The kinds of factors that control PRI variation
in different plant functional types, organizational levels and temporal scales, how and the extent to
which these factors control changes in PRI and how these effects can be decreased or avoided, however,
remain to be clarified. An integrated and robust model for remotely sensing carbon uptake using PRI
at different scales will also need to be developed for using PRI as an estimator of carbon uptake.

In this review, we analyze the main factors that drive changes in PRI and its assessment of RUE at
foliar, canopy and ecosystemic levels based on the scientific literature reviewed by Garbulsky et al. [20]
and on an additional review of the literature published between 2010 and 2015, and we summarize
the applications of PRI for interpreting ecophysiological variables. We also describe the principal
suggestions for improving the estimation of RUE and carbon uptake using PRI. The primary purpose
of this study is thus to determine if PRI, a simple, optical remote-sensing index, is a good proxy of
RUE at both short and long timescales from foliar to global levels.

2. Affecting Factors

We found more than 110 publications in the Science Citation Index published from 2010 to
2015 that studied remotely sensed PRI; among those, 73 studies analyzed the disparately functional
mechanisms of PRI at varying spatiotemporal scales and the factors that drive PRI variation and hinder
its use at longer timescales and larger regions. Here, we reviewed these affecting factors of PRI over
temporal (daily and seasonal) and spatial scales (from leaves to ecosystems).

2.1. Daily Changes

2.1.1. Foliar Level

Leaves in different canopy positions with changing illumination and varying temperature
have different PRI values. For example, shaded leaves had higher PRI values than sunlit leaves
with higher irradiance that generated a larger xanthophyllic pigment pool and a higher potential
diurnal pigment conversion [67,82,83]. In particular, illumination also led to a lower PRI toward
midday [83] and a recovery in late afternoon on sunny days [76,84–87] but to a higher PRI toward
midday on cloudy days [76]. PRI changed little over time with weak light [88] and did not vary with
maximum photochemical efficiency (Fv/Fm) [87,89], relative water content (RWC), CO2 assimilation or
stomatal conductance under low photosynthetic photon flux density (PPFD) (<700 µmol·m−2·s−1) [90].
In contrast, PRI values decreased under light saturation, due to the generation of a photoprotective
reaction, which decreased the epoxidation state (EPS) [85]. PRI was also sensitive to increased NPQ
during the initial growing stages in crops and to xanthophyllic pigments during the later growing
stages [91]. PRI, however, was a poor diurnal indicator of the de-epoxidation state (DEPS) in different
crown levels for spruce needles, probably due to the variation in the chlorophyll/carotenoid ratio [92].

Drought [30,93], temperature stress [87,93], low nitrogen concentration [91,94], iron deficiency [95],
high altitude [96], high ultraviolet A/B [97,98] and disease [99–102] can potentially induce biochemical
and physiological changes (e.g., chlorophyllic and carotenoid contents, xanthophyll cycle and NPQ)
and inhibit the photochemistry of PSII, thus leading to a decrease in PRI, which was more apparent in
young than in mature leaves as cadmium stress increased [103]. Variations in the angle and direction
of illumination [104] and instrumental FWHM (full width at half-maximum) [69] can also change the
optical properties, which then influence PRI values. Gamon and Berry [67] reported that the sizes of
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both the facultative xanthophyllic and constitutive pigment pools affected PRI and that the latter but
not the former caused PRI to vary with canopy position; they also suggested that lutein de-epoxidation
might influence PRI variability in nature. Other studies have also reported that foliar chlorophyllic
and carotenoid pigment pools, which characterize the plant physiological status, contribute greatly
to the variability of PRI [91,92,105], so incorporating the effects of other photosynthetic pigments is
necessary to use PRI as a more accurate proxy for biophysical parameters or plant status [88,91].

2.1.2. Canopy Level

Fifteen of the publications studied the diurnal response of canopy PRI to the ecophysiological
status of the vegetation and to photosynthetic performance. The status of epoxidation of the
xanthophyllic cycle accounted for most of the diurnal PRI variability [76,106], especially in the
early morning and afternoon [107], and short-term adaptations to varying levels of solar irradiance
increased PRI variability [106]. Damm et al. [108] demonstrated the sensitivity of canopy reflectance
and vegetation indices derived from spatial and spectral high-resolution data to varying irradiances,
and reported that unknown direct/diffuse irradiance caused by complex interactions of surface
irradiance and reflectance anisotropy accounted for up to 32% of the uncertainty of PRI for crops.
Another study found that spectra were best obtained ca. 10 a.m. but that deviation from the
zenith affected PRI, although the effect of the departure of 10◦ from the nadir view precision on
PRI accuracy was acceptable [109]. Further, a high relative azimuth angle showed higher PRI values
at any view zenith angles by capturing more shaded foliage and thus decreasing the effect of soil
background [82,83]. In addition, PRI tracked RUE poorly when chlorophyllic concentrations during
senescence were low [109] and when wheat canopies at the elongation stage were sparse [110].
In contrast, PRI values were lower for dark soil, even with dense vegetation, but estimated RUE
and PSII efficiency better [62,82,110]. PRI has also been used as an indicator of salinity stress in coastal
species but varied with tissue chlorides and not with pigments [111]. Some studies have also reported
that soil reflectance [62], species [110], canopy structure [75,82], tree age and illumination patterns [84]
complicated the interpretation of PRI. Gamon and Bond [84], however, supported the hypothesis
that photosynthesis is coordinately regulated, allowing PRI to be used as an indicator of diurnal
photosynthetic activity.

2.2. Seasonal Changes

2.2.1. Foliar Level

PRI is intended as a measure of the responses of a constitutive component dependent on the
pigment content of leaves and on a facultative component varying on a short timescale because of the
xanthophyllic cycle [67]. Hmimina et al. [86] reported foliar pigment content had a stronger impact on
PRI than on the relationship with RUE at seasonal timescales and proposed a procedure for correcting
PRI that clarified this pigment effect at the foliar level. PRI values during growth were lower for
sunlit than shaded leaves [83,112] and were higher for dark-green than either light- or yellow-green
leaves [83,87]. PSII efficiency could not be efficiently tracked by PRI in varying light intensities, seasons
and leaf colors due to the influence of chlorophyll, low temperature at night or low illumination on
reflectance, which inhibit the epoxidation of the xanthophyllic cycle and retain more xanthophyllic
pigments [87,113]. Likewise, the tracking of seasonal levels of Chlorophyll a/b (Chl a/b) using PRI
was affected by high non-photochemical dissipation from the senescence of the vegetation and drought
stress in desert species during growth [114]. PRI decreased throughout the soybean growing season
due to elevated ozone concentrations, which increased the protective dissipation of excess energy
and decreased the foliar contents of nitrogen and chlorophyll [115,116]. PRI, however, correlated
well with NPQ in evergreens during most of the year except during spring recovery after winter
down-regulation [72] and throughout the stages of crop leaves unless PRI was corrected for pigment
effects [88]. Similarly, EPS could not account for the variation in PRI during spring recovery [54,55]
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due to the changes in the constitutive pigment pool, but not the facultative xanthophyllic cycle, which
led to the primary variation of PRI during spring recovery and over the year in evergreen conifers.
Hernández-Clemente et al. [117] found that changes in chlorophyllic and carotenoid concentrations
caused the variation of PRI values due to the seasonal fluctuation of foliar optical signals. Similar
findings were also reported for Salix viminalis trees [112], eggplant [88] and oak and beech trees [86],
where the sizes of the pigment pools contributed to most of the PRI variability and thus limited its
use for RUE estimation on long timescales. Changes in pigment concentrations due to water stress,
however, could also potentially affect the seasonal variability of PRI [118–120], but these changes
varied between species such as Umbilicaria arctica and U. hyperborean [118]. PRI clearly differentiated
between normal and stressed holm oaks but was not very informative under a severe drought [121],
and could generally detect the physiological status of water-stressed plants but was not useful for the
drought-tolerant species Elaeagnus umbellate [122].

2.2.2. Canopy Level

Recent studies have indicated that the changes in the patterns of seasonal and inter-annual PRI
were correlated with chlorophyllic and carotenoid pool sizes and structural properties [76,107,123,124].
Structural changes of the canopy caused by sustained water stress [120,123,125,126] or a varying leaf
area index (LAI) [127] over the season led to PRI variability and loss of the seasonal relationship
between PRI and RUE. PRI calculated from pure crown reflectance for fruit trees under different
irrigation regimes varied with xanthophyllic pigment contents and not with vegetation structure or
chlorophyllic content [128]. The sensitivity of PRI to physiological indicators of stress when calculated
for entire canopies, however, was considerably lower for dark soil [128]. PRI has shown sensitivity
to both the zenith angle and relative azimuth angle [83]. Differences in the correlations between
PRI and RUE for different types of vegetation can be due to differences in the canopy structure and
shadow fraction, however, when the canopy is detected from only one angle (as with MODIS) [4],
highlighting the importance of the effect of the canopy structure on PRI. PRI was also sensitive to
changes in the structure and physiology during the soybean growing season caused by elevated CO2

and O3 concentrations [127]. Canopy PRI values were higher during the growth phase than other
phases [83,129] and did not efficiently track RUE variability during the ripening stage [129]. Canopy
PRI values were higher on cloudy days with low irradiance than on sunny days [130], and were
correlated most strongly with RUE under clear or slightly overcast skies [123]. For some vegetation
such as Elaeagnus umbellate, a drought-tolerant invasive species, PRI decreased slightly during water
stress because of the plant’s special physiological and morphological characteristics [122].

2.2.3. Ecosystemic Level

MODIS and CHRIS/PROBA are common operational instruments for studying PRI at ecosystemic
and regional scales [9,60,131,132]. Alterations in the angle at which satellites detect seasonal
fluctuations of illumination, the shadow fraction detected by the sensor and atmospheric effects
were identified as critical influences on PRI signals on a spatial scale [31,71,79,133], with the exception
of some relatively uniform and dense canopy structures and a low variability of shadow fractions [71].
PRI obtained from the backscatter direction [25,60,132] nonetheless minimized the effect of shadows,
and near-nadir satellite observations [79] that reduced the effects of soil background and atmospheric
scattering were also optimal and improved the accuracy of RUE detection. PRI performance
was improved in forward-scattering directions after replacing the PRI formulation wavelength,
which indicates a possible shift in the signal of xanthophyllic de-epoxidation with the direction
of detection. In contrast, Sims et al. [134] found no difference between backward and forward effects
on MODIS PRI in a dense evergreen and two deciduous forest ecosystems. MODIS PRI has detected
the impacts of water stress on RUE [25], but not for severe droughts [31,135]. Intra-annual changes
in MODIS PRI were dependent on the composition of foliar pigments at evergreen sites and on the
dynamics of canopy structure at deciduous sites [79], but a universally applicable model for correlating
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ecosystemic RUE with MODIS PRI for all types of ecosystems could not be found. Vegetation indices
designed to be more sensitive to chlorophyllic content explained most of the variability in GPP in
a subalpine grassland ecosystem characterized by a strong seasonally dynamic GPP, and the accuracy
only slightly improved by adding PRI to the model formulation [136]. The combined use of PRI and
VPD was also one of the better models for estimating RUE in tropical evergreen rainforests [77].

2.3. Other Factors

Several studies have concentrated on the influence of the configuration and calibration of
field spectroradiometers on PRI variation. Most spectroradiometers are designed for periodic use,
but continuous measurements and the validation of remote-sensing data are needed to improve
PRI accuracy and application in assessing carbon uptake [137,138]. Regular calibration and the
correction of data based on the effect of nonlinearity were therefore recommended to ensure data
quality [85,137,139]. Radiometric and spectral stability have high impacts on the uncertainty of PRI.
The accurate measurement of near-surface spectral data can provide an important groundwork for the
calibration and validation of satellite measurements [85].

3. Application

PRI has been used as an indicator of photosynthetic function at long timescales and in large areas
and of carbon uptake at large scales [8,9,11,20]. We summarized various aspects of the applications of
PRI based on the review by Garbulsky et al. [20]. Sixty percent of the articles published between 2010
and 2015 linked PRI to plant physiological variables (Table 1 [4,25,28,30,31,54,55,60,62,69,71,72,75–77,
79,81,84–95,98,101,103,105,107,109–115,117,119–124,126,128–130,132,136,140–153]). We included only
the studies that calculated PRI as (R531 − R570)/(R531 + R570) or (R570 − R531)/(R570 + R531) [18,19]
to allow analysis and comparisons. The coefficients of determination (R2) and uncharted correlations
were extracted from the figures, and were analyzed and drawn using boxplots for each type of
vegetation (e.g., broadleaved, coniferous and herbaceous/crop plants), timescale (daily or seasonal,
i.e., changes within or across seasons) and organizational level (foliar, canopy for a single plant or
a monospecific stand, or ecosystemic for a stand of mixed species). We also included the results
by Garbulsky et al. [20] in our boxplots. The correlations obtained from 153 publications were thus
analyzed. All variables except the six most common ecophysiological variables linked to PRI in Table 2
in Garbulsky et al. [20] were also analyzed and plotted. The overall relationships between RUE and
PRI reported during the last two decades were analyzed at daily and seasonal scales and at foliar to
ecosystemic levels.
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Table 1. List of published studies (2010–2015) linking photochemical reflectance index (PRI) with ecophysiological variables. Specrad, spectroradiometer. Abbreviations
for the ecophysiological variables: RWC, relative water content; gS, stomatal conductance; RUE, radiation-use efficiency; net CO2 uptake, net photosynthetic rate,
gross primary productivity or light-saturated photosynthesis; EPS or DEPS, epoxidation or de-epoxidation state of the xanthophylls; Fv/Fm, maximum photochemical
efficiency of PSII; ∆F/Fm’, effective quantum yield, actual photochemical efficiency or photochemical efficiency of photosystem II (ΦPSII); Fs, steady-state fluorescence;
NPQ, non-photochemical quenching; Chl/Car or Car/Chl, chlorophyll/carotenoid or carotenoid/chlorophyll ratio; VAZ, xanthophyll-cycle pigment pools;
V, violaxanthin; A, antheraxanthin; Z, zeaxanthin; L, lutein; qN, non-photochemical quenching; PPFD, photosynthetic photon flux density; fAPAR, fraction
of absorbed photosynthetically active radiation; fIPARg, fraction of photosynthetically active radiation intercepted by vegetation; αs, canopy shadow fraction; Tl-Tair,
leaf minus air temperature; Tc-Ta, crown minus air temperature.

Article Order by
Published Date Year Reference Scale Variance Factor Species/Vegetation Type Vegetation Type Sensor Figure # Ecophysiological Variable

3 2010 (Ibaraki et al. [140]) Leaves Diurnal Strawberry, lettuce and potato Herbaceous and crop PRI imaging system 1a ∆F/Fm’

2 2010 (Ibaraki and Gupta [89]) Leaves Diurnal Potato Herbaceous and crop PRI imaging system 2 Fv/Fm

35 2013 (Kováč et al. [92]) Leaves Diurnal Norway spruce (Picea abies) Conifers Spectrad 1e Chl/Car

38 2013 (Peñuelas et al. [141]) Leaves Diurnal Populus nigra and Quercus ilex Broadleaf Spectrad 2 Monoterpene emission rates
Isoprene emission rates

48 2014 (Magney et al. [91]) Leaves Diurnal
Sunflower, wheat, Quercus

macrocarpa, Betula papyrifera,
and Populus tremuloides

Herbaceous and crop
and Broadleaf Spectrad 1c

1b
NPQ
DEPS

58 2016 (Harris et al. [112]) Leaves Diurnal Salix viminalis Broadleaf Specrad

1d and 9 RUE

1f Net CO2 uptake

1e Car/Chl

2

Isoprene emission rates
VAZ

Neoxanthin
Lutein

Chl
Car

VAZ/Chl

63 2015 (Stratoulias et al. [142]) Leaves Diurnal Shore reed Herbaceous and crop Specrad 2

Chl
Fs

Fm’
ETR

43 2014 (Ainsworth et al. [115]) Leaves Diurnal (Ozone) Soybean Herbaceous and crop Specrad 2
Leaf N (%)

Chl
Seed Yield

55 2014 (Xue et al. [103]) Leaves
Diurnal

(Cd polution)
Soybean Herbaceous and crop Specrad

1d and 9 RUE

1f Net CO2 uptake

1a ∆F/Fm’

64 2015 (Su et al. [95]) Leaves
Diurnal

(Fe deficiency) Peanut Herbaceous and crop Specrad
1d and 9 RUE

1f Net CO2 uptake
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Table 1. Cont.

Article Order by
Published Date Year Reference Scale Variance Factor Species/Vegetation Type Vegetation Type Sensor Figure # Ecophysiological Variable

40 2013 (Sun et al. [143]) Leaves
Diurnal (Genetic
transformation)

Barley Herbaceous and crop Spectrad
1d and 9 RUE

1f Net CO2 uptake

21 2012 (Osório et al. [93]) Leaves
Diurnal

(Moisture and
temperature stress)

Ceratonia siliqua Broadleaf Spectrad

1a ∆F/Fm’

1c NPQ

2 RWC
Water potential

25 2012 (Shrestha et al. [94]) leaves Diurnal
(N supply) Rice Herbaceous and crop PlantPen PRI 200 1c NPQ

37 2013 (Pallozzi et al. [98]) Leaves
Diurnal

(UVA stress)
Populus Canadensis Broadleaf Spectrad

1d and 9 RUE

1f Net CO2 uptake

1a ∆F/Fm’

30 2013 (Calderón et al. [101]) Leaves Diurnal
(Vericillium wilt) Olive orchard Broadleaf PlantPen 2 Tc-Ta

gS

7 2010 (Sarlikioti et al. [90]) Leaves
Diurnal

(Water stress) Tomato Herbaceous and crop PlantPen PRI 200

1f Net CO3 uptake

2 RWC
gS

8 2010 (Shahenshah et al. [144]) Leaves
Diurnal

(Water stress) Cotton and Peanut Herbaceous and crop PMA-11
1a ∆F/Fm’

1c NPQ

13 2011 (Garrity et al. [105]) Leaves
Diurnal

(Water stress)
Bur oak and 10 sugar maple Broadleaf Specrad

1e Car/Chl

2 Chl
Car

18 2011 (Ripullone et al. [30]) Leaves
Diurnal

(Water stress)

Arbutus unedo, Quercus ilex,
Quercus pubescens, Quercus cerris,

Quercus robur, Cannabis sativa,
Fagus sylvatica and

Populus euroamericana

Broadleaf Specrad

1d and 6 RUE

1f Net CO2 uptake

1a ∆F/Fm’

1b DEPS

2 Water potential

27 2012 (Weng et al. [113]) Leaves Diurnal/
Seasonal

Pinus taiwanensis, Stranvaesia
niitakayamensis, two

Miscanthus spp. and mango

Broadleaf, conifers
and Herbaceous

and crop
Spectrad 1a and 3a ∆F/Fm’

4 Fv/Fm

23 2012 (Rahimzadeh-Bajgira et al. [88]) Leaves Diurnal/
Seasonal

Solanum melongena Herbaceous and crop Spectrad

1c NPQ

4a ∆F/Fm’

2 and 4 ETR

67 2015 (Wong and Gamon, [55]) Leaves Diurnal/Seasonal/
Internnual

Pinus contorta and Pinus
ponderosa

Conifers Specrad 3e Car/Chl

3b EPS
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Table 1. Cont.

Article Order by
Published Date Year Reference Scale Variance Factor Species/Vegetation Type Vegetation Type Sensor Figure # Ecophysiological Variable

11 2010 (Weng et al. [87]) Leaves Diurnal/
Seasonal

Mango Broadleaf Specrad

1a and 3a ∆F/Fm’

3b EPS

4 Fv/Fm
Minimum temperature

46 2014 (Harris et al. [85]) Leaves/
Canopy Diurnal Pinus contorta Conifers Specrad 1b and 5b EPS

32 2013 (Gamon and Bond [84]) Leaves/
Canopy Diurnal Douglas-fir and ponderosa pine Conifers Spectrad 6 PPFD

16 2011 (Hernández-Clemente et al. [69])
Leaves/
Canopy

Diurnal
(Water stress)

Pinus sylvestris and Pinus nigra Conifers Specrad
AHS airborne

1b and 5b EPS

6 gS
Water potential

22 2012 (Porcar-Castell et al. [72]) Leaves Seasonal Pinus sylvestris Conifers Spectrad

3d and 9 RUE

3c NPQ

3a ∆F/Fm’

3e Car/Chl

3b DEPS

4

Fv/Fm
Car
Chl

VAZ
VAZ/Chl

47 2014 (Hmimina et al. [86]) Leaves Seasonal Quercus robur and Fagus sylvatica Broadleaf Specrad 3d, 9 and 10a RUE

3a ∆F/Fm’

60 2015 (Nyongesah et al. [114]) Leaves Seasonal Haloxylon ammodendron Shrubland Specrad 4 Chl a/b

62 2015 (Šebela et al. [145]) Leaves
Seasonal

(High night
temperature)

Rice Herbaceous and crop Specrad
3a ∆F/Fm’

4 Fs

53 2014 (Sun et al. [119]) Leaves
Seasonal

(Interannual) Olive Broadleaf Specrad

3d and 9 RUE

3f Net CO2 uptake

3e Car/Chl

4 Car
RWC

54 2014 (Tsonev et al. [121]) Leaves
Seasonal

(Water stress)
Quercus ilex Broadleaf Specrad

3d and 9 RUE

3f Net CO2 uptake

4 RWC
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Table 1. Cont.

Article Order by
Published Date Year Reference Scale Variance Factor Species/Vegetation Type Vegetation Type Sensor Figure # Ecophysiological Variable

10 2010 (Suárez et al. [128]) Leaves/
Canopy Seasonal Peach, nectarine and orange Broadleaf Specrad

Airborne 3b and 7b EPS

19 2012 (Hernández-Clemente et al. [117])
Leaves/
Canopy Seasonal Pinus sylvestris Conifers Camera

3e Car/Chl

4 Car
Chl

66 2015 (Wong and Gamon [54]) Leaves/
Canopy Seasonal

Pinus contorta, Pinus ponderosa
and Picea glauca Conifers Specrad

3f Net CO2 uptake

3b EPS

3a ∆F/Fm’

3e Car/Chl

4

ETR
Z/Chl
L/Chl

β-carotene/Chl
VAZ/Chl

36 2013 (Liu et al. [110]) Canopy Diurnal Maize and winter wheat Herbaceous and crop Spectrad
5d and 9 RUE

5f Net CO2 uptake

5c NPQ

29 2012 (Zinnert et al. [111]) Canopy Diurnal
(Salinity stress)

Baccharis Halimifolia and
Myrica cerifera Broadleaf Spectrad

5d and 9 RUE

5f Net CO2 uptake

5a ∆F/Fm’

5c NPQ

6
gS

Water potential
Total chlorides

44 2014 (Delalieux et al. [146]) Canopy Diurnal
(Water stress) Citrus orchard Herbaceous and crop APEX 6 Water potential

57 2015 (Gamon et al. [76]) Canopy Diurnal/
Seasonal Pinus contorta Conifers SRS sensor

5b EPS

7c Chl/Car

4 2010 (Mänd et al. [62]) Canopy Diurnal

Calluna vulgaris,
Vaccinium myrtillus,

Empetrum nigrum, Populus alba,
Erica multiflora, Globularia alypum,

Cistus monspeliensis and
Pistacia lentiscus

Mixture Specrad

5a ∆F/Fm’

6 Fv/FmqN

12 2010 (Wu et al. [109]) Canopy Diurnal Wheat Herbaceous and crop Specrad 5d, 9 and 10a RUE

5f Net CO2 uptake

61 2015 (Rossini et al. [147]) Canopy Diurnal Maize Herbaceous and crop Airborne
5a ∆F/Fm’

6 gS
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Table 1. Cont.

Article Order by
Published Date Year Reference Scale Variance Factor Species/Vegetation Type Vegetation Type Sensor Figure # Ecophysiological Variable

28 2012 (Zarco-Tejada et al. [120]) Canopy Diurnal
(Water stress) Orange and mandarin Broadleaf PlantPen

SKR 1800 camera 6 gS
Water potential

41 2013 (Zarco-Tejada et al. [75]) Canopy Diurnal
(Water stress) Vineyard Herbaceous and crop Airborne 6 gS

Water potential

50 2014 (Panigada et al. [148]) Canopy Diurnal
(Water stress) Maize and sorghum Herbaceous and crop AISA Eagle 5a ∆F/Fm’

26 2012 (Stagakis et al. [126]) Canopy
Diurnal/
Seasonal

(Water stress)
Orange Broadleaf Camera 6 Water potential

5 2010 (Naumann et al. [122]) Canopy Seasonal Elaeagnus umbellata Broadleaf Specrad 7a ∆F/Fm’

42 2013 (Zarco-Tejada et al. [149]) Canopy Seasonal Olive orchard Broadleaf Airborne 7e Net CO2 uptake

59 2015 (Hmimina et al. [107]) Canopy Seasonal Quercus robur, Fagus sylvatica and
Pinus sylvestris Mixture Specrad 7d, 9 and 10a RUE

65 2015 (van Leeuwen et al. [130]) Canopy Seasonal Douglas-fir Conifers PRiAnalyze 7d and 9 RUE

6 2010 (Rossini et al. [129]) Canopy Seasonal Rice Herbaceous and crop Specrad 7d and 9 RUE

7e and 10c Net CO2 uptake

39 2013 (Rossini et al. [150]) Canopy Seasonal
(Water stress) Maize Herbaceous and crop Airborne 7a

∆F/Fm’
RWC

Tl-Tair

1 2010 (Hilker et al. [4]) Canopy Seasonal
(Interannual)

Douglas-fir and Aspen Broadleaf and
Conifers

Specrad 7d and 9 RUE

αs

15 2011 (Hall et al. [151]) Canopy Seasonal
(Interannual) Douglas-fir and Aspen Broadleaf and

Conifers
CHRIS/
PROBA RUE

31 2013 (Cheng et al. [81]) Canopy Seasonal
(Interannual) Corn Herbaceous and crop Spectrad 7d, 9 and 10b RUE

7e and 10c Net CO2 uptake

68 2015 (Wu et al. [124]) Canopy Seasonal
(Interannual) Wheat Herbaceous and crop Specrad 7d, 9 and 10a RUE

52 2014 (Stagakis et al. [60]) Leaves/
Ecosystem Seasonal Phlomis fruticosa forest Broadleaf Specrad CHRIS/

PROBA 3d, 8a and 9 RUE

34 2013 (Kefauver et al. [152]) Ecosystem Ozone Pinus ponderosa, Pinus jeffreyi and
Pinus uncinata Conifers AVIRIS and CASI O3

56 2015 (Balzarolo et al. [153]) Ecosystem Seasonal grassland Herbaceous and crop Specrad 8a and 9 RUE

8b Net CO2 uptake

24 2012 (Rossini et al. [136]) Ecosystem Seasonal Subalpine grassland Herbaceous and crop HIS

8a and 9 RUE

8b and 10c Net CO2 uptake

Chl
fIPARg
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Table 1. Cont.

Article Order by
Published Date Year Reference Scale Variance Factor Species/Vegetation Type Vegetation Type Sensor Figure # Ecophysiological Variable

9 2010 (Stagakis et al. [132]) Ecosystem Seasonal
(Interannual) Phlomis fruticosa forest Broadleaf CHRIS/

PROBA

Chl
Chl a
Car

Water potential

45 2014 (Guarini et al. [25]) Ecosystem Seasonal Quercus cerris forest Broadleaf MODIS 8a and 9 RUE

14 2011 (Goerner et al. [79]) Ecosystem Seasonal
(Interannual)

Savanna (Combretum apiculatum,
Sclerocarya birrea and

Acacia nigrescens), Pinus ponderosa
forest, deciduous broad-leaved

forest and Quercus ilex forest

Broadleaf and
Conifers

MODIS
8a and 9 RUE

fAPAR

20 2012 (Moreno et al. [31]) Ecosystem Seasonal
(Interannual)

Mediterranean
Pinus pinaster forests Conifers MODIS 8a and 9 RUE

17 2011 (Hilker et al. [71]) Ecosystem Seasonal
(Interannual)

Pseudotsuga Menziesii,
Thuja plicata, Tsuga heterophylla,

Quercus rubra, Acer rubrum,
Betula lenta, Pinus strobes,

Tsuga Canadensis, Pinus banksiana,
Picea rubens, Picea mariana,

Pinus banksiana,
Eucalyptus delegatensis and

Eucalyptus dalrympleana

Mixture CHRIS/
PROBA αs

49 2014 (Nakaji et al. [77]) Ecosystem Seasonal
(Interannual)

Dipterocarp forest
(many species) Mixture Specrad 8a, 9 and 10b RUE

51 2014 (Soudani et al. [123]) Ecosystem Seasonal
(Interannual)

Deciduous forest (Quercus robur
and Quercus petraea) and

Mediterranean evergreen forest
(Quercus ilex)

Broadleaf SKR 1800

8a, 9 and 10a RUE

8b Net CO2 uptake

aPAR
VPD

33 2013 (Garbulsky et al. [28]) Ecosystem Seasonal/
Interannual

Quercus ilex Broadleaf MODIS
8a and 9 RUE

8b Net CO2 uptake

Diametric-increment



Remote Sens. 2016, 8, 677 13 of 33

3.1. Foliar Level

3.1.1. Diurnal Changes

A total of 33 articles published from 1992 to 2015 analyzed the relationships between foliar-level
PRI and actual photochemical efficiency (∆Fv/Fm’), NPQ, the chlorophyll/carotenoid ratio, EPS, DEPS,
RUE or net CO2 uptake (Figure 1). The correlations between PRI and ∆Fv/Fm’ (n = 57, n is the number
of the correlations reported in the literature) and RUE (n = 28) were among the most relevant. Most of
the relationships were focused on broadleaved and herbaceous/crop plants. The correlations for
broadleaved and coniferous plants were stronger than those for herbaceous/crop plants, except for the
correlations between PRI and EPS (or DEPS). R2 for all variables other than the chlorophyll/carotenoid
ratio also showed high differentiation for herbaceous/crop plants (Figure 1). PRI for broadleaved
species represented medians of 80%, 76% and 78% of the variability of ∆Fv/Fm’, RUE and net CO2

uptake, respectively (Figure 1a,d,f).
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(ΔF/Fm’); (b) Epoxidation or de-epoxidation state of xanthophylls (EPS or DEPS); (c) Non-
photochemical quenching (NPQ); (d) Radiation-use efficiency (RUE); (e) Carotenoid/chlorophyll 
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Figure 1. Boxplots of the coefficients of determination of the relationships between PRI and physiological
variables at the foliar level and diurnal timescale: (a) Actual photochemical efficiency (∆F/Fm’);
(b) Epoxidation or de-epoxidation state of xanthophylls (EPS or DEPS); (c) Non-photochemical
quenching (NPQ); (d) Radiation-use efficiency (RUE); (e) Carotenoid/chlorophyll (Car/Chl) or
chlorophyll/carotenoid (Chl/Car) ratio; and (f) Net CO2 uptake. Central lines represent medians,
boxes represent 50% of the data, whiskers represent minima and maxima and circles represent outliers.
The numbers of correlations reported in the literature are shown in brackets.

The R2 of PRI with other physiological variables is presented in Figure 2. All studies focused on
broadleaved and herbaceous/crop plants, for which PRI explained averages of 68% or 67%, respectively,
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of the variation of emissions of volatile organic compounds (monoterpenes and isoprenes). PRI was
significantly correlated with foliar nitrogen content and seed yield (R2 = 0.29, p < 0.0001 and R2 = 0.30,
p < 0.0001, respectively) [115] for soybean leaves exposed to elevated ozone. PRI was also significantly
correlated in six broadleaved species with water potential under water stress (0.60 < R2 < 0.95) [30]
and with RWC (R2 = 0.32) under water and temperature stress [93].
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Figure 2. The mean values of coefficients of determination of the relationships between PRI and several
physiological variables at the foliar level and short daily timescale. All the correlations were significant
(p < 0.05). Error bars indicate standard error.

3.1.2. Seasonal Changes

Thirty articles published since 1992 linked PRI with ecophysiological changes at the seasonal
scale (Figure 3). PRI was most often correlated with actual photochemical efficiency ∆Fv/Fm’ (n = 57)
and explained 17%–90% of its variability (Figure 3a). Median R2 was higher for conifers than for other
species groups. PRI accounted for 0%–86% of the variability of NPQ for broadleaved and coniferous
trees (Figure 3c) and was more strongly correlated with the chlorophyll/carotenoid ratio (R2 between
0.55 and 0.89) than with EPS (or DEPS) (Figure 3b,e). The correlations between PRI and RUE and net
CO2 uptake for broadleaved species were highly variable (R2 ranged from 0.0 to 0.84 and 0.0 to 0.92,
respectively; Figure 3d,f), but median R2 was 0.12 and 0.19 higher, respectively, than those reported by
Garbulsky et al. [20].

PRI was significantly correlated with other pigments or pigment ratios (e.g., chlorophyll,
xanthophyll-cycle pigment pools: chlorophyll (VAZ/Chl) and lutein/chlorophyll; mean R2 between
0.40 and 0.86; Figure 4). PRI was significantly correlated with Fv/Fm, RWC and the electron transport
rate (ETR), and predawn PRI decreased with the minimum temperature and explained 55% of the
variability for mango leaves [87].
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Figure 3. Boxplots of the coefficients of determination of the relationships between PRI and physiological
variables at the foliar level and seasonal timescale: (a) Actual photochemical efficiency (∆F/Fm’);
(b) Epoxidation or de-epoxidation state of xanthophylls (EPS or DEPS); (c) Non-photochemical
quenching (NPQ); (d) Radiation-use efficiency (RUE); (e) Carotenoid/chlorophyll (Car/Chl) or
chlorophyll/carotenoid (Chl/Car) ratio; and (f) Net CO2 uptake. Central lines represent medians,
boxes represent 50% of the data, whiskers represent minima and maxima and circles represent outliers.
The numbers of correlations reported in the literature are shown in brackets.Remote Sens. 2016, 8, 677 16 of 34 
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3.2. Canopy Level

3.2.1. Diurnal Changes

Only 12 articles in the last two decades reported canopy PRI for tracking ecophysiological changes
at short daily timescales. Ten studies published after 2010 illustrated the increasing applicability of
PRI at the canopy scale. The correlations between PRI and ecophysiological variables were lower
at the canopy than the foliar level. PRI explained 44%–74% of the variability of the actual quantum
yield for broadleaved and herbaceous/crop plants but accounted for only 1%–40% of the variability
of ∆Fv/Fm’ for mixed forests (Figure 5a). PRI also explained 23% and 38% of the variability of RUE
for two broadleaved species under salinity stress (Figure 5d) [111]. Median R2 between PRI and RUE
and net CO2 was as high as 0.66 and 0.63, respectively, for herbaceous/crop species (Figure 5d,f).
One article reported an R2 between PRI and the chlorophyll/carotenoid ratio of 0.65 in Pinus sylvestris
(Figure 5e) [117]. Two articles reported that PRI correlated well with NPQ, with a median R2 of 0.73
(Figure 5c). Three other articles reported slightly variable relationships between PRI and EPS for
conifers (Figure 5b).Remote Sens. 2016, 8, 677 17 of 34 
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Figure 6. The mean values of coefficients of determination of the relationships between PRI and 
several physiological variables at the canopy level and short daily timescale. All the correlations were 
significant (p < 0.05) except for one relationship between PRI and carotenoid in Pinus sylvestris [117] 
and one between PRI and steady-state chlorophyll fluorescence (Ft) [73]. Error bars indicate standard 
error. 

Figure 5. Boxplots of the coefficients of determination of the relationships between PRI and the
physiological variables at the canopy level and diurnal timescale: (a) Actual photochemical efficiency
(∆F/Fm’); (b) Epoxidation state of xanthophylls (EPS); (c) Non-photochemical quenching (NPQ);
(d) Radiation-use efficiency (RUE); (e) Carotenoid/chlorophyll (Car/Chl); and (f) Net CO2 uptake.
Central lines represent medians, boxes represent 50% of the data, whiskers represent minima and
maxima and circles represent outliers. The numbers of correlations reported in the literature are shown
in brackets.

Changes in PRI were significantly correlated with pigment contents, similar to the correlation at
the foliar level (Figure 6). PRI was strongly correlated with Fv/Fm and non-photochemical quenching
(qN) for shrubland at three sites in northern Europe but not for shrubland at southern sites due to the
dominance of soil reflectance [62]. PRI explained a mean of 21%–46% and 21%–56% of the variability
of water potential and stomatal conductance, respectively. The change in PPFD explained 86% of the
change in diurnal PRI patterns for conifers [84], which demonstrated a strong effect of illumination on
diurnal PRI patterns.
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Figure 6. The mean values of coefficients of determination of the relationships between PRI and
several physiological variables at the canopy level and short daily timescale. All the correlations were
significant (p < 0.05) except for one relationship between PRI and carotenoid in Pinus sylvestris [117] and
one between PRI and steady-state chlorophyll fluorescence (Ft) [73]. Error bars indicate standard error.

3.2.2. Seasonal Changes

Only a few studies reported correlations between PRI and ∆Fv/Fm’ (n = 2), EPS (n = 1) and
the chlorophyll/carotenoid ratio (n = 1) at long-term (seasonal to inter-annual) timescales, with R2

between 0.44 and 0.78 (Figure 7a–c). Twenty-four articles, however, linked seasonal or inter-annual
changes in PRI with RUE at individual-plant to stand levels. Median R2 (0.79 and 0.65, respectively;
Figure 7d) was 7.0% and 4.0% higher for broadleaved and coniferous trees, respectively, than those
(R2 = 0.72 and 0.61, respectively) in Figure 5 in Garbulsky et al. [20]. PRI accounted for 66% of the
variability of RUE over an entire growing season for a mixed forest [107]. Four articles published after
2010 illustrated that PRI was strongly correlated with changes in net CO2 uptake for broadleaved
(R2 = 0.59 and 0.75) and herbaceous/crop (R2 = 0.54 and 0.81) plants (Figure 7e).
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than that for broadleaf (0.59 of median R2) and coniferous forests (0.39 of median R2), indicating a 

Figure 7. Boxplots of the coefficients of determination of the relationships between PRI and
physiological variables at the canopy level and seasonal timescale: (a) Actual photochemical efficiency
(∆F/Fm’); (b) Epoxidation state of xanthophylls (EPS); (c) Carotenoid/chlorophyll ratio (Car/Chl);
(d) Radiation-use efficiency (RUE); and (e) Net CO2 uptake. Central lines represent medians, boxes
represent 50% of the data, whiskers represent minima and maxima and circles represent outliers.
The numbers of correlations reported in the literature are shown in brackets.
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Some studies also analyzed the correlations of PRI with water content (RWC, R2 = 0.64) [150] and
stomatal conductance (gS, R2 = 0.46) [125]. One study reported that PRI varied with the difference
between foliar and air temperature for maize (R2 = 0.82) [150]. Another study illustrated that PRI
obtained from a multi-angular spectroradiometer varied with the change in the fraction of the canopy
shadow (αs) [4] under constant RUE (0.45 g CMJ−1) for Douglas fir (R2 = 0.45) and Aspen (R2 = 0.83).

3.3. Ecosystemic Level

PRI obtained from MODIS using different reference bands was generally used for estimating
ecosystemic RUE and GPP [20]. Tower or tripod-mounted spectroradiometers were also used to study
ecosystemic carbon uptake at long timescales [77,123]. Forty relationships in 14 articles linked PRI with
RUE based on eddy covariance in various kinds of ecosystems (e.g., Mediterranean forests, temperate
deciduous forests, mountain grassland, evergreen tropical rainforest and boreal and coniferous forests;
Table 1). Median R2 for the correlations between RUE and PRI ranged from 0.12 to 0.59 (Figure 8a),
with few non-significant relationships during severe drought years [25]. The correlation between PRI
and RUE (R2 = 0.12, p < 0.001) for a tropical evergreen forest [77] was lower than that for broadleaf
(0.59 of median R2) and coniferous forests (0.39 of median R2), indicating a site-specific difference for
the PRI-RUE relationships. PRI was significantly correlated with net CO2 uptake for Mediterranean
forests (R2 was 0.28 [123] and 0.38 [28]; Figure 8b) and grassland ecosystems (R2 ranged between 0.13
and 0.81 [136,153]; Figure 8b).
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3.4. RUE-PRI Relationships Across Scales

We calculated the mean R2 between RUE and PRI at short daily and long seasonal scales from
foliar to ecosystemic levels (Figure 9). All correlations were strong across spatiotemporal scales,
with the mean R2 ranging between 0.45 and 0.66. Mean R2 values at daily timescales were similar to
those in Figure 10 in Garbusky et al. [20] at foliar and canopy levels. The mean R2 values at seasonal
scales, however, were 20% and 7% higher for foliar and canopy levels, respectively, than those in
Figure 10 in Garbusky et al. [20]. Also, the mean R2 was higher for seasonal than diurnal relationships
at the canopy scale. Forty relationships linked changes in RUE with PRI at the ecosystemic level, which
was the second largest number of relationships, with a standard error of 0.04. Thirty-four of these
relationships were reported after 2010. Daily PRI was thus better correlated with RUE at the foliar than
the canopy level, whereas seasonal PRI tracked the changes in RUE better at the canopy than the foliar
and ecosystemic levels.
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4. Improvements in PRI Implementation

As stated above, a series of factors hinder the interpretation of PRI and its capacity to detect RUE
from foliar to ecosystemic levels and at different temporal scales. The minimization and avoidance of
these influences on PRI variation has thus become an urgent problem given its significance in the study
of global carbon fixation. Improving the accuracy of PRI interpretation and particularly its application
to long-term and global carbon uptake will require: (1) employing different kinds of instruments
and models, from ground-based to space-borne satellite sensors; (2) choosing reference bands for PRI
calculation (Table 2) and (3) combining other parameters and generating PRI models.

Table 2. PRI formulations for assessing RUE or net CO2 uptake.

Formulation References

Original PRI = (R531 − R570)/(R531 + R570) Gamon et al. [18]
Peñuelas et al. [19]

Different bands

PRI586 = (R531 − R586)/(R531 + R586) Panigada et al. [148]

PRI515 = (R531 − R515)/(R531 + R515)
PRI512 = (R531 − R512)/(R531 + R512)

Calderón et al. [101]
Hernández-Clemente et al. [69,117]

Rossini et al. [136,150]
Stagakis et al. [126]

Zarco-Tejada et al. [120]

PRI = (R525 − R570)/(R525 + R570)
PRI = (R539 − R570)/(R539 + R570)
PRI = (R545 − R570)/(R545 + R570)
PRI = (R532 − R701)/(R532 + R701)

Stagakis et al. [60,132]
Porcar-Castell et al. [72]

PRI551 = (R531 − R551)/(R531 + R551)
PRI555 = (R531 − R555)/(R531 + R555)
PRI645 = (R531 − R645)/(R531 + R645)
PRI667 = (R531 − R667)/(R531 + R667)

Rossini et al. [136]
(simulated MODIS bands)

PRI = (Band11 − Band1)/(Band11 + Band1)
PRI = (Band11 − Band12)/(Band11 + Band12)
PRI = (Band11 − Band13)/(Band11 + Band13)

Garbulsky et al. [28] (MODIS)
Guarini et al. [25] (MODIS)
Moreno et al. [31] (MODIS)
Sims et al. [134] (MODIS)
Vicca et al. [135] (MODIS)

PRI600 = (R531 − R602)/(R531 + R602)
PRI670 = (R531 − R668)/(R531 + R668) Rossini et al. [150]
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Table 2. Cont.

Formulation References

Different formulations

∆PRI = cPRI − PRI
(cPRI is dark-state PRI) Gamon and Berry [67]

PRIc = PRI − PRI0 Soudani et al. [123]
Hmimina et al. [86,107]

PRIs = (PRI + 1)/2

Ainsworth et al. [115]
Guarini et al. [25]
Rossini et al. [129]

Wu et al. [109]

∆PRI = PRImidday − PRIpre-dawn Ripullone et al. [30]

∆PRI = PRI − PRIRef
(PRIRef is the minimum PRI near midday) Liu et al. [110]

Combination with
other indices

PRInorm = PRI/(RDVI × R700/R670) Zarco-Tejada et al. [75]

Chlorophyll index
(NDVI, NDSI, MTCI, NDI and CI)

Garrity et al. [105]
Rossini et al. [129,136]

Hernández-Clemente et al. [117]

∆PRI∆αs
−1 Hall et al. [151]

Hilker et al. [4,71]

CPRI = PRI − (0.645 × ln(mNDVI705) + 0.0688) Rahimzadeh-Bajgiran et al. [88]

PRIR1 = (R550 − R531)/(R550 − R570)
PRIR2 = (R531 − R570)/(2R550 − R531 − R570) Wu et al. [109]

sPRI = 0.15 × (1 − exp (−0.5 × LAI)) − 0.2
rPRI = PRI − sPRI Wu et al. [124]

SIF Cheng et al. [81]
Rossini et al. [129]

VPD Nakaji et al. [77]

fAPAR estimated as MTCI Rossini et al. [136] (MODIS)

PRIn = PRI − PRI0
sPRIn = (1 + PRIn)/2 Vicca et al. [135] (MODIS)

4.1. Instruments

Various instruments have been used for obtaining PRI in addition to the traditional ground-based
spectroradiometer. A PRI imaging system was developed using a low-cost CCD camera and band-pass
filters (530 and 570 nm) to non-destructively evaluate micropropagated plantlets, and has been
successfully tested in cultured plantlets and from outside the culture vessels [89,140]. An automated
multi-angular spectroradiometer (AMSPEC I and II system) [4] was designed and CHRIS/PROBA
was used [71,90,151,154] for instantaneously measuring the spectra of a canopy at multiple detection
angles along the tracking path, and for illustrating the effect of canopy structure and detection
geometry at various spatial scales. CHRIS/PROBA, however, can only provide a very limited spatial
coverage, which inhibits the monitoring of multiple-angular PRI at regional and global scales [154].
A temperature-controlled spectrometric system was also designed to collect high resolution spectral
data to detect the diurnal and seasonal variation of RUE and fluorescence [137]. Other instruments,
such as a simple filtered photodiode (QuadPod) [155], a low-cost spectroscopic instrumentation
(PRiAnalyze) [130] and an automated PRI sensor with upward- and downward-facing sensors [76],
were developed to explore the environmental and physiological constraints on photosynthesis and to
improve remote-sensing studies of carbon uptake.

4.2. Modeling

Models of radiative transfer have been applied to explore the changes in PRI influenced by
a variety of detection geometries, illumination conditions and canopy structures in conjunction with
in situ measurements [4,31,69,75,82,83,109,117,128,133,151,154]. The accuracy of the simulated PRI
from ACRM (A Markov chain Analytical two-layer Canopy Reflectance Model) was affected by
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canopy structural change and thus led to inaccurate estimates of RUE and GPP [83]. Empirical
regression models were effectively used to assess PRI and ecophysiological variation [87,109,113,124].
Devising a valid model is therefore important for accurately estimating PRI and providing a continuous
assessment of GPP.

4.3. Different Formulations of PRI

The application of the xanthophyllic cycle and different reference bands has been discussed
extensively for better understanding PRI (Table 2). Porcar-Castell et al. [72] used PRI calculated as
(R545 − R570)/(R545 + R570), which has been associated with the rapidly conformational changes
contributing to protonation in key proteins in the thylakoid membrane during reversible NPQ and
has improved the correlations between NPQ and PRI, especially during early spring decoupling in
conifers. A combination of a vegetation index of the xanthophyllic de-epoxidation band (531 nm) with
a band associated with chlorophyllic content (701 nm from CHRIS) performed better than PRI for
estimating seasonal RUE from the backscatter direction [60]. PRI515 (or PRI512) has recently been
proposed to minimize the effects of canopy structure under different stresses [69,101,117,120,126] but
was not significantly correlated with GPP for an olive orchard [149] and performed slightly weaker
than PRI for crops under water stress [148,150]. Panigada et al. [148] reported that PRI570 and PRI586
correlated with ∆F/Fm’ (R2 = 0.49 and 0.51, respectively) for cereal crops under water stress better
than other PRIs based on different reference wavelengths. Additionally, PRIs based on green reference
bands at 555 and 551 nm correlated mostly with RUE, and PRIs based on reference bands at 645 and
667 nm correlated better with the leaf chlorophyllic concentration than with RUE [136].

The first derivative of PRI with respect to shadow fractions viewed by the sensor (∆PRI∆αs
−1

or PRI’) was developed to alleviate the impacts of vegetation structure and radiometric properties
on the basis of a multi-angular observation algorithm, which has been used to infer RUE across
different biomes [4,71,151,154]. The proposed PRI’ technique, however, was probably not applicable
to infer RUE for canopies with reduced variability in shadow fractions as noted by Hilker et al. [71].
Gamon and Berry [67] showed that a combination of dark-state sampling (cPRI) and dark-to-light
conversion (∆PRI) could experimentally isolate the two (constitutive and facultative) effects on PRI
in situ without extensive destructive sampling, which could help to interpret the variation in the
PRI signal from remote platforms. Differences in canopy PRI (∆PRI) from the minimum reference
PRI near midday [110] were similarly applied and improved the correlations between RUE and PRI
(R2 = 0.24 for PRI and 0.5 for ∆PRI). Differences in foliar PRI (∆PRI, dawn PRI minus midday PRI) [30]
improved the correlation with the maximum photosynthetic rate (R2 = 0.21 for PRI and 0.44 for ∆PRI).
Some studies also reported the use of scaled PRI (sPRI = (PRI + 1)/2) to avoid negative values and for
comparable analysis [25,115,129,135].

A corrected PRI (PRIc = PRI − PRI0), after subtracting an estimated PRI0 defined as PRI
of perfectly dark-adapted leaves, correlated well with RUE at diurnal [86], seasonal [86,123] and
inter-annual scales [123]. This approach considered the impacts of changes in canopy structure
and pigments, which greatly improved the correlations between PRI and RUE (Figure 10a) with
a increment of R2 by 71% and 92% at the foliar level in oak and beech, respectively [86], and by
22% for a deciduous broadleaved forest [123]. The correlation between PRI and RUE, however, was
not improved by correcting with PRI0 for an evergreen forest, because PRI0 varied little across
the season [123]. Hmimina et al. [107] developed an accurate deconvolution model for further
improving PRI0 and PRIc to identify the influences of pigment and physiological changes on
PRI variation and improved the correlation with RUE from an exponential correlation of 0.66 to
a highly significant linear correlation of 0.93. Vicca et al. [135] similarly applied PRIc (method
from Soudani et al. [123]) using MODIS data, successfully removed the impact of pigment and
illumination and detected the severe drought and GPP variation for a deciduous broadleaved forest
that was not detected by EVI. Wu et al. [109] also revised PRI by introducing the optical signal of
chlorophyllic content at 550 nm to decrease the effect of the sizes of pigment pools; two revised
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indices, PRIR1 = (R550 − R531)/(R550 − R570) and PRIR2 = (R531 − R570)/(2R550 − R531 − R570),
correlated better with RUE, particularly during senescence when chlorophyllic content and LAI
were low (R2 = 0.57 and 0.59 for PRIR1 and PRIR2, respectively; R2 = 0.20 for PRI). The residual
PRI (rPRI = PRI − sPRI), which removed the structural-related signal in PRI (sPRI) as a function
of LAI, increased by 42% the correlation in the estimation of RUE over PRI [124]. In other
studies, the calibrated PRI (CPRI = PRI – (0.645 × ln(mNDVI705) + 0.0688)) adjusted the effects
of the pigments and improved the correlation between PRI and NPQ [88]. PRI calculated as
PRInorm = PRI/(RDVI × R700/R670) (RDVI, Renormalized Difference Vegetation Index [156]) which
normalizes for decreases in chlorophyllic content and canopy leaf area induced by stress was better
correlated with stomatal conductance, water potential and pigment content and detected water stress
better than the standard PRI [75].
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+ b0) × (a × VI + b) × ln(PAR)) [136] in a subalpine grassland. 

4.4. Combining with Other Parameters to Evaluate Carbon Fixation 

Combining PRI with other vegetation indices (VIs) was a promising approach in the review by 
Garbulsky et al. [20] to improve the detection of carbon uptake. The conventional and widely used 
RUE model expresses GPP as the product of APAR and RUE. PRI is a proxy of RUE, so some VIs 
(e.g., normalized difference spectral indices (NDSI), NDVI, the MERIS terrestrial chlorophyll index 
(MTCI) and EVI) correlate well with the fraction of APAR (fAPAR) [10,14–17,20,24,129,136]. GPP can 
thus be efficiently assessed with the combination of MODIS VIs and PRI, and the correlations were 
22%–77% higher than with PRI (Figure 10c) [136]. Estimation of seasonal GPP based on MTCI-related 
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grassland best (R2 = 0.90) [136]. 

SIF, another photoprotective mechanism successfully sensed from space, is also an indicator of 
vegetation function and is used for carbon modeling [157,158]. The combination of SIF with PRI is 
strongly correlated with RUE and GPP for crops (Figure 10b,c). Combining PRI and SIF in a linear 
regression model improved GPP estimation for a cornfield (R2 = 0.8 for SIF at red band and 0.78 for 
SIF at far-red band, Figure 10c) [81]. Gross ecosystemic productivity (GEP) for a rice crop was best 
estimated based on APAR as a function of steady-state SIF computed at 760 nm (SIF(far-red)) and on 
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Figure 10. Comparison of the relationships between RUE/GPP vs. PRI and RUE/GPP vs.
improved/combined PRI. (a) PRIc was used for Q. robur and F. sylvatica [86], a mixed canopy
of Q. robur, F. sylvatica and P. sylvestris [107] and a deciduous broadleaved forest [123]; PRIR1

and PRIR2 were used for T. aestivum [109] and rPRI for T. aestivum (mixed non-linear model,
rPRI = PRI − (0.15 × (1 − exp(−0.5 × LAI)) − 0.2)) [124]; (b) Tracking RUE combining PRI with SIF
(red) or SIF (far-red) yield in Z. mays (RUE = a + b × PRI + c × SIF + d × PRI × SIF) [81] and with VPD
in a dipterocarp forest (RUE = 0.153 × PRI − 0.00067 × VPD + 0.029) [77]; (c) Tracking GPP combining
PRI with SIF (red) or SIF (far-red) in Z. mays (GPP = a + b × PRI + c × SIF + d × PRI × SIF) [81],
with NDSI (GPP = (a0 × sPRI + a1) × (a2 × NDSI + a3) × PARi, sPRI = (1 + PRI)/2) and SIF (far-red,
GPP = (a0 × sPRI + a1) × (a2 × SIF + a3), sPRI = (1 + PRI)/2) in O. sativa [129] and with VI
(MTCI, NDVI and EVI) and ln(PAR) (GPP = (a0 × PRI + b0) × (a × VI + b) × ln(PAR)) [136] in
a subalpine grassland.

4.4. Combining with Other Parameters to Evaluate Carbon Fixation

Combining PRI with other vegetation indices (VIs) was a promising approach in the review by
Garbulsky et al. [20] to improve the detection of carbon uptake. The conventional and widely used
RUE model expresses GPP as the product of APAR and RUE. PRI is a proxy of RUE, so some VIs
(e.g., normalized difference spectral indices (NDSI), NDVI, the MERIS terrestrial chlorophyll index
(MTCI) and EVI) correlate well with the fraction of APAR (fAPAR) [10,14–17,20,24,129,136]. GPP can
thus be efficiently assessed with the combination of MODIS VIs and PRI, and the correlations were
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22%–77% higher than with PRI (Figure 10c) [136]. Estimation of seasonal GPP based on MTCI-related
fAPAR and PRI-related RUE (PRI551, MODIS band 4 as the reference band) modeled a subalpine
grassland best (R2 = 0.90) [136].

SIF, another photoprotective mechanism successfully sensed from space, is also an indicator of
vegetation function and is used for carbon modeling [157,158]. The combination of SIF with PRI is
strongly correlated with RUE and GPP for crops (Figure 10b,c). Combining PRI and SIF in a linear
regression model improved GPP estimation for a cornfield (R2 = 0.8 for SIF at red band and 0.78 for
SIF at far-red band, Figure 10c) [81]. Gross ecosystemic productivity (GEP) for a rice crop was best
estimated based on APAR as a function of steady-state SIF computed at 760 nm (SIF(far-red)) and on
RUE as a function of sPRI (Figure 10c) [129], which was the first study that modeled seasonal courses
of GEP based on measurements of remotely sensing fluorescence. Nakaji et al. [77] demonstrated that
the accuracy of estimating RUE (Figure 10b) and the estimation error were improved for an evergreen
tropical rainforest by applying a regression model using PRI and VPD, probably due to the influence
of the water conditions on unseasonal variation in RUE.

5. Discussion

The factors affecting PRI variation at different spatiotemporal scales were reviewed in this study
based on the most recent publications in which PRI has received increasing attention and on the
previous publications reviewed by Garbulsky et al. [20]. Our more than 20 years’ analysis shows
that diurnal changes in PRI were strongly correlated with EPS at both the foliar and canopy levels
(Figures 1 and 5) across more vegetation species than those reported in the first study reviewed
by Garbulsky et al. [20]. Interestingly, the relationships of seasonal PRI with Chl/Car ratios were
stronger than with EPS at both foliar and canopy levels for different species (Figures 1 and 3).
Such results indicate the significant impacts of xanthophyll-cycle pigments on short-term changes
of PRI, and chlorophyll and carotenoid pool sizes on long-term changes of PRI, in accordance with
the reported studies by Wong and Gamon [54,55]. Our analysis thus further supports that taking
into account the changes in chlorophyll and carotenoid pool sizes is critical for PRI interpretation on
long timescales. Our summarized correlations between PRI and ecophysiological variables linked
to RUE (Figures 1–8) show that PRI is a good proxy of photosynthetic efficiency at foliar, canopy
and ecosystemic levels. The mean R2 values between PRI and RUE at diurnal and seasonal scales
from foliar to ecosystemic levels in this study (Figure 9) were even higher than in the first study
reviewed by Garbulsky et al. [20]. Further, the significant relationships of PRI with water status
(relative water content (RWC) and water potential) suggest that PRI also could be appropriate for
water stress assessment.

Nevertheless, the factors complicating PRI interpretation still hinder the use of generalized
PRI-RUE relationships. Our summarized review of improvements in PRI implementation found,
however, that key factors driving PRI variation, such as the sizes of pigment pools and canopy
structure could be minimized or avoided in part to make PRI an efficient indicator of RUE. Such
improvement could be possible through subtracting the dark-adapted PRI and introducing the optical
signal of pigment pools or the structural-related signal. Moreover, our analysis also showed that
combining RUE-related PRI with APAR-related greenness biomass indices (e.g., NDVI, MTCI and EVI;
Table 2) efficiently explores GPP (Figure 10), as expected in the previous review by Garbulsky et al. [20].
On the other hand, most reported publications focused on broadleaf and herbaceous and crops during
last two decades (Table 1), so expanding the study to a wide range of plant functional types is necessary.

The strong correlations of PRI with actual photochemical efficiency, especially with RUE and net
CO2 uptake across different plant functional types and spatiotemporal scales, indicate the possibility
of assessing photosynthetic activity at larger scales. Besides, MODIS PRI has been increasingly and
successfully used to assess ecosystemic RUE, allowing us to expect a PRI product in platforms such as
the commonly used NDVI.
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6. Conclusions and Perspectives

The mechanisms involved in PRI variation can be complex due to varying spatial and temporal
scales. Many physical, biochemical and physiological factors can affect diurnal and seasonal PRI
patterns at foliar, canopy and ecosystemic levels. Most of the variation of PRI when scaling up
from diurnal to seasonal measurements is likely due to the changes in the size of the constitutive
pigment pools other than facultative xanthophyllic de-epoxidation [54,55,67]. Other physical or
external factors, such as illumination, temperature or water stress, soil background, disease and low
nitrogen levels, have the potential to produce biochemical and physiological changes that can also
generate PRI variation. The structural properties of canopies and the solar/spectrometric (or satellite)
directions of detection at the canopy and ecosystemic levels are also important factors that contribute to
changes in PRI. Our analysis, however, also indicated that PRI was often significantly correlated with
ecophysiological variables and RUE. R2 values between PRI and RUE ranged between 0.41 and 0.66
(Figure 9), even higher than in the first studies reviewed by Garbulsky et al. [20]. In particular, PRI was
a good indicator of diurnal changes in RUE and a good proxy of seasonal changes in photosynthetic
efficiency at different spatial scales.

Our understanding of the ecophysiological mechanisms of PRI variation and the implementation
of PRI, particularly for assessing carbon uptake, have progressed. Further, other photoprotective
mechanisms, for example chloroplast avoidance movement, have been proposed to have an effect
on light-induced optical changes related to zeaxanthin formation [159] that probably also play a role
in the PRI variation. Such influences on PRI variation should be further analyzed. The correlations
between PRI and RUE have been greatly improved by decreasing the impact of the canopy structure
and the sizes of the pigment pools. These impacts can be decreased by subtracting the dark-adapted
PRI to minimize the influence of the canopy structure and the pigment pools and by introducing the
optical signal of the pigment pools or the structural-related signal. GPP, though, can be better assessed
by combining the RUE-related PRI with APAR-related greenness indices, thus using the approach of
the RUE model. Combining SIF with PRI is another promising opportunity for interpreting RUE and
monitoring GPP from local to regional scales.

Studies of the optical remote sensing of RUE, especially using PRI to estimate or model RUE,
have focused mainly on temperate forests and grassland, with limited studies of tropical forests. More
attention should thus be paid to the assessment of RUE and GPP using PRI for different species,
especially for tropical forests. We should also further explore the PRI mechanisms across vegetation
types and at various spatial and temporal scales. Unmanned aerial vehicles (UAVs) with various
multispectral cameras can increasingly provide an exciting opportunity to obtain canopy PRI and
also SIF with high spatiotemporal resolution [74,75,149,160], which could be very beneficial for our
understanding of the variation in canopy PRI. Our results indicate that corrected PRI (PRIc) proposed
by Soudani et al. [123] is an outstanding improved PRI, which could be a promising proxy of RUE and
is warranted to be tested over a wide range of species and spatiotemporal scales. Furthermore, PRIc
was successfully obtained from MODIS and tracked the severe drought episode and GPP variation.
Thus, we advocate efforts to produce a PRI product in platforms (e.g., MODIS PRI) as existing MODIS
NDVI/EVI products. Additionally, PRI coupled with SIF or indices of greenness biomass is a promising
approach to build an integrated and robust model of remotely sensed carbon uptake. We can attempt
to combine PRI corrected or calibrated by the most influential factors (e.g., pigment pool sizes and
structural changes) with SIF or other greenness indices to establish a generalized global model of carbon
uptake. The satellite data from MODIS and GOME (Global Ozone Monitoring Experiment) provide
potential regional and global calculations of PRI. The Sentinel program [161] of the ESA (European
Space Agency), the new hyperspectral instruments built by the DLR (German Aerospace Center), such
as EnMAP (Environmental Mapping and Analysis Program [162]) or DESIS (Earth Sensing Imaging
Spectrometer [163]) on board the ISS (International Space Station), as well as the forthcoming missions
built by NASA (National Aeronautics and Space Administration), such as the HyspIRI (Hyperspectral
Infrared Imager [164]) or the EIS (Europa Imaging System [165]) allow space-based calculation of the
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PRI and estimation of the RUE at a higher spatial resolution. Incorporating satellite data with over
685 eddy covariance flux sites (FLUXNET [166]) even further enhances the global continuous and
accurate monitoring of carbon uptake by terrestrial ecosystems.
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reflectance continuum removal index to the xanthophyll de-epoxidation cycle in Norway spruce needles.
J. Exp. Bot. 2013, 64, 1817–1827. [CrossRef] [PubMed]

93. Osório, J.; Osório, M.L.; Romano, A. Reflectance indices as nondestructive indicators of the physiological
status of Ceratonia siliqua seedlings under varying moisture and temperature regimes. Funct. Plant Biol. 2012,
39, 588–597. [CrossRef]

94. Shrestha, S.; Brueck, H.; Asch, F. Chlorophyll index, photochemical reflectance index and chlorophyll
fluorescence measurements of rice leaves supplied with different N levels. J. Photochem. Photobiol. B Biol.
2012, 113, 7–13. [CrossRef] [PubMed]

95. Su, Y.; Zhang, Z.; Su, G.; Liu, J.; Liu, C.; Shi, G. Genotypic differences in spectral and photosynthetic response
of peanut to iron deficiency. J. Plant Nutr. 2015, 38, 145–160. [CrossRef]

96. Rajsnerová, P.; Klem, K.; Holub, P.; Novotná, K.; Večeřová, K.; Kozáčiková, M.; Rivas-Ubach, A.; Sardans, J.;
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