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Abstract

The distribution of flowering across the growing season is governed by each species’ evolu-

tionary history and climatic variability. However, global change factors, such as eutrophica-

tion and invasion, can alter plant community composition and thus change the distribution of

flowering across the growing season. We examined three ecoregions (tall-, mixed, and

short-grass prairie) across the U.S. Central Plains to determine how nutrient (nitrogen (N),

phosphorus, and potassium (+micronutrient)) addition alters the temporal patterns of plant

flowering traits. We calculated total community flowering potential (FP) by distributing peak-

season plant cover values across the growing season, allocating each species’ cover to

only those months in which it typically flowers. We also generated separate FP profiles for

exotic and native species and functional group. We compared the ability of the added nutri-

ents to shift the distribution of these FP profiles (total and sub-groups) across the growing

season. In all ecoregions, N increased the relative cover of both exotic species and C3 gra-

minoids that flower in May through August. The cover of C4 graminoids decreased with

added N, but the response varied by ecoregion and month. However, these functional

changes only aggregated to shift the entire community’s FP profile in the tall-grass prairie,

where the relative cover of plants expected to flower in May and June increased and those

that flower in September and October decreased with added N. The relatively low native
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cover in May and June may leave this ecoregion vulnerable to disturbance-induced invasion

by exotic species that occupy this temporal niche. There was no change in the FP profile of

the mixed and short-grass prairies with N addition as increased abundance of exotic species

and C3 graminoids replaced other species that flower at the same time. In these communities

a disturbance other than nutrient addition may be required to disrupt phenological patterns.

Introduction

Assembly rules suggest that communities assemble to limit interspecific niche overlap, such

that the exploitation of shared resources is minimized and resource use by the community as a

whole is relatively efficient [1, 2]. One means of limiting interspecific niche overlap is to sepa-

rate the onset and length of life history events along a temporal (phenological) gradient [3].

For example, plant community assembly tends to reduce interspecific overlap in the phenology

of flower production, which limits pre-dispersal seed predation and competition for pollinator

visits [4, 5]. Other organisms, such as mycorrhizal fungi [6] and higher trophic groups [7], also

benefit from temporal dispersion of plant production. Furthermore, the continuity of ecosys-

tem functions, such as water and nutrient uptake and carbon fixation, also rely on the pheno-

logical sequence of plant growth and reproduction across the growing season [8].

Flowering phenology is constrained by evolutionary processes [9] and each species has its

own characteristic set of triggers that initiate life history events, such as reproduction [10]. Cli-

mate conditions, such as water availability and accumulated growing degree days, trigger flow-

ering in some species, and thus their phenology can vary from year to year in response to

inter-annual climate variability [11]. In contrast, some phenological events are initiated by

events, such as day length, that are fixed in time [12]. At the community level, however, the

sequence of flowering across species is relatively consistent from year to year [13, 14]. There-

fore, we can use gross estimates of phenological activity to develop profiles of community-level

phenological activity.

Compositional shifts concomitant with patterns in global change such as eutrophication

and invasion by exotic species have consequences for the timing and distribution of phenologi-

cal activity at the community scale. Plant communities are exposed to high levels of nutrient

input [15]. Indeed, eutrophication is disrupting worldwide grasslands [16] by reducing plant

diversity and community function [17, 18, 19] and increasing exotic species cover and richness

[20]. Here, we compare two competing hypotheses concerning intra-community phenological

patterns, niche collapse and sparse-niche exploitation, that could follow these community

changes. Under the niche collapse scenario (Hypothesis 1) the nutrient-induced loss of native

species diversity may push novel communities towards dominance by a few species that share

life-history strategies [21], including the onset and length of flowering [22]. This scenario

would result in a collapse of the community’s reproductive activity into a narrower window.

In contrast to narrowing the phenology of flowering, nutrient addition could shift, or

broaden, the distribution of flowering activity to sparsely occupied temporal niches (Hypothe-

sis 2). This could occur if nutrients facilitate the immigration or an increase in species that

exploit an underutilized resource, such as a window of time when few established species are

flowering [23]. These sparsely-occupied phenological windows can occur at any point in a

growing season, but are typically in the shoulder seasons, which are early spring and late fall in

the U.S. Central Plains [24]. Such phenological mismatches between increasing and established

species reduce barriers to invasion, facilitating, and possibly accelerating, plant species turn-

over [25].
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We use data from a standardized, distributed experiment across three ecoregions of the

U.S. Central Plains to test these two contrasting hypotheses following nutrient [N, P, K

(+micronutrients)] addition. These prairie ecoregions (tall-, mixed-, and short-grass) are

primarily differentiated by climate, specifically mean annual precipitation. As an estimate of

plant phenological response, we developed the flowering potential (FP) metric to evaluate

changes in community-scale phenological traits. To better evaluate those factors underlying

change in the total community we further sub-divided these data into provenance and func-

tional groups. Finally, we compared the volume of the total community FP profiles to deter-

mine if the overall phenological window is narrowing as a result of niche collapse (additional

support for Hypothesis 1).

Materials and methods

Nutrient treatment and site selection

Plant cover data were collected as part of the Nutrient Network (nutnet.org) [18, 19, 26]. In this

experiment, plots are 5 x 5 m and arranged in blocks. Sites typically have three blocks, but some

have as many as six. Three nutrient treatments [N, P and K (+ micronutrients, hereafter “μ”)], each

with two levels (control, added), are crossed in a factorial design, for a total of eight treatment com-

binations per block. Nutrient addition rates and sources are: 10 g m−2 year−1 N, as timed-release

urea [(NH2)2CO], 10 g m−2 year−1 P, as triple-super phosphate [Ca(H2PO4)2], 10 g m−2 year−1 K,

as potassium sulfate [K2SO4], and 100 g m−2 of a micronutrient mix of Fe (15%), S (14%), Mg

(1�5%), Mn (2�5%), Cu (1%), Zn (1%), B (0�2%) and Mo (0�05%). N, P and K are applied annually,

micronutrients (+μ) were applied only once at the start of the experiment to avoid toxicity. Plant

species cover is estimated to the nearest percent at peak biomass using a modified Daubenmire

[27] method in permanent 1 x 1 m subplots. Because plant canopies can overlap, total cover data

can sum to greater than 100% and we converted this data to relative cover by dividing each individ-

ual species’ cover by the plot total. Plant relative cover data are available on Figshare [28].

To limit variation due to rainfall seasonality and growing season length, we restricted our

analysis to U.S. Central Plains grassland ecoregions that were identified by local researchers as

tall-, mixed-, or short-grass prairie. We chose to use data from the fourth treatment year, as

community composition shifts significantly over the first 3 years of nutrient application [18].

This resulted in a total of 11 sites (Table 1).

Table 1. Nutrient Network sites used in this analysis.

Site Ecoregion U.S. State Latitude (˚N) Longitude (˚W) Year 4 MAT (˚C) MAP (mm)

Boulder South Campus Short- Colorado 39.97 -105.23 2012 9.7 425

Shortgrass Steppe LTER Short- Colorado 40.82 -104.77 2011 8.4 365

Cedar Point Short- Nebraska 41.20 -101.63 2011 9.5 445

Bart’s Brothers Mixed- Nebraska 42.24 -99.65 2011 8.7 597

Saline Experimental Range Mixed- Kansas 39.05 -99.10 2011 11.8 607

Temple Tall- Texas 31.04 -97.35 2011 19.1 871

Konza LTER Tall- Kansas 39.07 -96.58 2011 11.9 877

Chichaqua Bottoms Greenbelt Tall- Iowa 41.79 -93.39 2013 9.0 855

Cedar Creek LTER Tall- Minnesota 42.43 -93.21 2011 6.3 750

Trelease Tall- Illinois 40.08 -88.83 2012 11.0 982

Hall’s Prairie Tall- Kentucky 36.87 -86.70 2011 13.6 1282

The Nutrient Network North American prairie sites used in this analysis with site ecoregion, U.S. state, latitude and longitude, the year the fourth fertilization

treatment occurred, mean annual temperature (MAT), and mean annual precipitation (MAP).

See nutnet.org for site contact information.

https://doi.org/10.1371/journal.pone.0178440.t001
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Plant phenology and species characteristics

The FP profile uses published flowering intervals to distribute peak-season plant cover values

across the growing season, allocating each species’ cover value to only those months in which

it typically flowers. To create this metric, we recorded the month(s) each species typically flow-

ers from published floras [29, 30]. These data were primarily obtained from the Flora of the
Great Plains [31], but for species not found there we used other floras [32, 33, 34, 35]. For

example, Monarda Fistulosa L. flowers in June, July, and August. For each month the relative

cover of each species at peak biomass in each plot was multiplied by a weight of 1, if the flora

indicated it was expected to flower, or by 0 if it was not expected to flower in that month.

These weighted relative cover values were then summed for all species in each plot for that

month. To continue the example, M. fistulosa’s relative cover is 0.117 for plot 61 at Chicaqua

Bottoms green belt, and is added to the FP value for the months June, July, and August for that

plot. Species that do not flower in a given month thus do not contribute to its FP value. In our

example, M. fisulosa’s cover would not added to the FP profile of May. The complete dataset of

plant traits, including species, reported flowering month(s), functional group, and consulted

flora, are available on Figshare [36].

We determined species origin from the United States Department of Agriculture’s Plants

database (plants.usda.gov). Osborne et al. [37] was consulted to determine the photosynthetic

pathway for each graminoid species. Data excluded from the analysis include plants that were

only identified to genus (e.g. Carex sp.) and tree seedlings. To determine the influence of spe-

cies’ provenance or functional group on the total FP we used the above method on subsets of

the data. This generated FP profiles for exotic and native species of all functional types (prove-

nance), and also C3 graminoids, C4 graminoids, forbs, and legumes of all origins (functional

group).

Analysis

All analyses were conducted using R version 3.3.0 [38]. The FP profiles (total and the exotic,

native, forb, C3 and C4 graminoid, and legume sub-sets) were analyzed with a linear mixed

model (nlme package) [39] with nutrients (N, P, and K+μ), growing season month (May

through October), and ecoregion (tall-, mixed-, or short-grass), and their interactions as the

model’s fixed effects and block nested within site included as a random effect. We used Bonfer-

roni multiple comparison corrections (lsmeans function) [40] to determine the significance of

the nutrient treatments, month, and ecoregion on the FP profile. As the main effects of the fer-

tilizer treatments on plant productivity and community composition are discussed elsewhere

[18, 19], we emphasize those results where the nutrient treatments significantly interact with

month, because these interactions indicate a change in the distribution of reproduction across

the growing season. Nutrient effects and interactions between month and ecoregion are

reported, but interpretation of these effects is outside the scope of this study.

We also calculated the total community flowering volume (area under the curve) generated

by the total community data using the auc function in the flux package [41]. The nutrient effect

on curve volume (January through December) was analyzed with a linear mixed model with

nutrients (N, P, and K+μ), ecoregion (tall-, mixed-, or short-grass), and their interactions as

fixed effects and block nested within site included as a random effect.

Results

We found that N addition shifted the distribution of the total FP profile across months, but

this differed among the studied ecoregions (Table 2; S1 Table). Bonferroni post-hoc tests

revealed that N addition influenced the FP in the tall-grass ecoregion, where the relative cover
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of species that typically flower in May and June increased in plots with added N (i.e. N, P�N,

K�N, and P�K+μ�N) compared with plots with no added N (i.e. control, P, K+μ, and P�K+μ)

(Fig 1A). Furthermore, those species that typically flower in September and October decreased

with added N. In contrast to the tall-grass ecoregion, added N did not change the total FP pro-

files in the mixed- (Fig 1B), and short-grass prairie (Fig 1C). The overall flowering volume

(area under curve; 307.0 ± 3.0% cover, mean ± standard error) was not affected by the nutrient

treatments or ecoregion (Fig 1; Table 3).

Table 2. ANOVA table for the flowering potential analyses of the total community, exotic species, and native species.

Total FP Exotic species FP Native species FP

n.d.f. d.d.f F-value d.d.f F-value d.d.f F-value

Intercept 1 1751 885.71 *** 1741 8.48 * 1739 183.18 ***

Phosphorus (P) 1 1751 0.03 1741 3.14 1739 1.57

Potassium + micros (K+μ) 1 1751 0.01 1741 0.57 1739 0.25

Nitrogen (N) 1 1751 0.11 1741 59.26 *** 1739 24.65 ***

Month 5 1751 254.37 *** 1741 19.45 *** 1739 275.05 ***

Ecotype 2 8 0.48 8 0.24 8 0.49

P * K+μ 1 1751 1.26 1741 0.02 1739 0.85

P * N 1 1751 0.03 1741 0.46 1739 0.47

K+μ * N 1 1751 0.09 1741 1.28 1739 0.27

P *Month 5 1751 0.37 1741 0.43 1739 0.23

K+μ *Month 5 1751 0.41 1741 0.10 1739 0.67

N *Month 5 1751 7.53 *** 1741 2.92 * 1739 2.91 *

P * Ecotype 2 1751 0.17 1741 10.05 *** 1739 5.74 **

K+μ * Ecotype 2 1751 0.08 1741 0.25 1739 0.11

N * Ecotype 2 1751 0.30 1741 0.26 1739 0.55

Month * Ecotype 10 1751 146.76 *** 1741 5.39 *** 1739 127.68 ***

P * K+μ * N 1 1751 0.16 1741 1.02 1739 0.57

P * K+μ *Month 5 1751 0.25 1741 0.17 1739 0.40

P * N *Month 5 1751 0.24 1741 0.10 1739 0.16

K+μ * N *Month 5 1751 0.23 1741 0.12 1739 0.11

P * K+μ * Ecotype 2 1751 0.02 1741 0.18 1739 0.23

P * N * Ecotype 2 1751 0.26 1741 2.01 1739 2.50

K+μ * N * Ecotype 2 1751 0.01 1741 2.61 1739 1.29

P *Month * Ecotype 10 1751 0.51 1741 0.38 1739 0.48

K+μ *Month * Ecotype 10 1751 0.78 1741 1.00 1739 0.70

N *Month * Ecotype 10 1751 3.61 *** 1741 0.93 1739 2.48 **

P * K+μ * N *Month 5 1751 0.15 1741 0.22 1739 0.01

P * K+μ * N * Ecotype 2 1751 0.47 1741 6.61 ** 1739 2.45

P * K+μ *Month * Ecotype 10 1751 0.49 1741 0.10 1739 0.43

P * N *Month * Ecotype 10 1751 0.21 1741 0.41 1739 0.20

K+μ * N *Month * Ecotype 10 1751 0.42 1741 0.21 1739 0.34

P * K+μ * N *Month * Ecotype 10 1751 0.29 1741 0.36 1739 0.22

ANOVA table for flowering potential (FP) for the total community and the exotic and native components of the prairie communities, including the associated

numerator degrees of freedom (n.d.f.) and denominator degrees of freedom (d.d.f.), F-values, and the associated p-values

*** p < 0.001

** p < 0.01

*p < 0.05.

https://doi.org/10.1371/journal.pone.0178440.t002
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Fig 1. Total flowering potential for prairie ecoregions. Mean (± SE) total flowering potential (FP), or the

relative cover of species expected to flower in each month, in tall- (top), mixed- (middle), and short-grass

(bottom) prairies. FP values for the entire year illustrate the total community flowering volume (area under the

curve); the shaded ecoregion indicates the growing season in the U.S. central plains. Treatments without

Nutrient addition shifts plant community composition towards earlier flowering species
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The FP profile for exotic species shifted in all communities following N addition (Table 2).

The relative cover of exotic species typically flowering in May through August increased in

those plots with added N compared with those treatments without N (Fig 2A). N addition

changed the FP profile for native species (Table 2) and post-hoc tests indicate that N reduced

in the cover of native species that typically flower in October, but only in the tall-grass ecore-

gion (Fig 2B).

The FP distribution across the growing season for both forbs and C3 graminoids changed

following the addition of N compared to plots with no added N in all ecoregions (Table 4).

Post-hoc tests find that N addition increased the relative cover of forbs that typically flower in

June through September (Fig 3A). The relative cover of C3 graminoids that typically flower

from May through August also increased with N addition (Fig 3B).

The FP profile for C4 graminoids decreased following N addition in all ecoregions, though

the response in each ecoregion varied by month (Table 4). N addition significantly reduced

the cover of C4 graminoids that typically flower in June through August in the short-grass prai-

rie, July for the mixed-grass, and July through October in the tall-grass prairies (Fig 3C). There

was no interaction between applied nutrients and flowering month for legumes.

Discussion

The prairie ecosystems historically covered the U.S. Central Plains and were dominated of C4

graminoids and forbs. These communities produced soils rich in organic matter that in many

added nitrogen (N) include the control, phosphorus (P), potassium + micronutrients (K+μ), and PK+μ, and

those with added N include N, NP, NK+μ, and NPK+μ. Asterisks indicate values that were determined to be

statistically distinct following Bonferroni correction (*** p < 0.001, ** p < 0.01, *p < 0.05).

https://doi.org/10.1371/journal.pone.0178440.g001

Table 3. ANOVA table for area under the curve analysis.

n.d.f. d.d.f F-value

Intercept 1 261 706.97 ***

Phosphorus (P) 1 261 0.03

Potassium (K+μ) 1 261 0.03

Nitrogen (N) 1 261 1.05

Ecotype 2 8 0.08

P * K+μ 1 261 2.17

P * N 1 261 0.03

K+μ * N 1 261 0.15

P * Ecotype 2 261 0.07

K+μ * Ecotype 2 261 0.03

N * Ecotype 2 261 0.39

P * K+μ * N 1 261 0.03

P * K+μ * Ecotype 2 261 0.15

P * N * Ecotype 2 261 0.28

K+μ * N * Ecotype 2 261 0.05

P * K+μ * N * Ecotype 2 261 0.10

ANOVA table for the analyses of the area under the curve for the total community flowering potential (FP)

Columns include the numerator degrees of freedom (n.d.f.) and denominator degrees of freedom (d.d.f.), F-

values, and the associated p-values

*** p < 0.001.

https://doi.org/10.1371/journal.pone.0178440.t003
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Fig 2. Flowering potential for exotic and native species. Mean (± SE) flowering potential (FP), the relative

cover of species expected to flower in each month of the growing season. Exotic species FP (top) is averaged

across all prairie ecoregions, as the highest order interaction was nitrogen (N) * month. Native species FP

(bottom) is separated for the tall-, mixed-, and short-grass prairies because there was an N * month * ecoregion

interaction for this group. Asterisks indicate values that are statistically distinct following Bonferroni correction ***
p < 0.001, ** p < 0.01, *p < 0.05.

https://doi.org/10.1371/journal.pone.0178440.g002
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instances have subsequently been used for agriculture. For example, less than one percent of

the tall-grass prairie remains [42]. Those remnants that remain are subject to multiple pres-

sures, including species loss, exotic species invasion, and altered disturbance regimes [17]. In

our analysis, N was the only added nutrient that interacted with month (and ecoregion in

some cases) to change the FP profiles. Other nutrients, alone or in an interaction with ecore-

gion, did change aspects of community composition, but because these interactions did not

Table 4. ANOVA table for flowering potential analysis for plant functional groups.

Forb FP C3 gramminoid FP C4 gramminoid FP Legume FP

n.d.f. d.d.f F-value d.d.f F-value d.d.f F-value d.d.f F-value

Intercept 1 1751 30.12 *** 1753 9.02 * 1763 34.93 *** 1759 5.55 *

Phosphorus (P) 1 1751 0.12 1753 4.06 * 1763 2.41 1759 0.02

Potassium + micros (K+μ) 1 1751 0.02 1753 0.37 1763 1.39 1759 11.43 ***

Nitrogen (N) 1 1751 80.99 *** 1753 48.08 *** 1763 187.23 *** 1759 38.96 ***

Month 5 1751 108.64 *** 1753 107.07 *** 1763 198.48 *** 1759 4.46 ***

Ecotype 2 8 1.03 8 1.95 8 0.35 8 2.06

P * K+μ 1 1751 0.31 1753 0.10 1763 4.86 * 1759 5.04 *

P * N 1 1751 1.53 1753 2.12 1763 0.09 1759 0.62

K+μ * N 1 1751 0.24 1753 1.47 1763 0.87 1759 0.86

P *Month 5 1751 0.56 1753 0.89 1763 0.14 1759 0.06

K+μ *Month 5 1751 0.06 1753 0.21 1763 0.32 1759 0.38

N *Month 5 1751 4.57 *** 1753 3.25 ** 1763 9.88 *** 1759 0.52

P * Ecotype 2 1751 1.43 1753 5.91 ** 1763 1.96 1759 0.81

K+μ * Ecotype 2 1751 0.40 1753 0.31 1763 1.42 1759 10.93 ***

N * Ecotype 2 1751 1.19 1753 2.15 1763 4.71 ** 1759 3.01 *

Month * Ecotype 10 1751 21.13 *** 1753 40.32 *** 1763 45.69 *** 1759 5.58 ***

P * K+μ * N 1 1751 0.00 1753 0.38 1763 0.46 1759 5.99 *

P * K+μ *Month 5 1751 0.16 1753 0.11 1763 0.63 1759 0.23

P * N *Month 5 1751 0.11 1753 0.47 1763 0.03 1759 0.15

K+μ * N *Month 5 1751 0.34 1753 0.17 1763 0.26 1759 0.34

P * K+μ * Ecotype 2 1751 1.13 1753 0.20 1763 1.60 1759 1.88

P * N * Ecotype 2 1751 0.07 1753 0.73 1763 1.35 1759 10.75 ***

K+μ * N * Ecotype 2 1751 2.05 1753 1.21 1763 0.99 1759 0.19

P *Month * Ecotype 10 1751 0.81 1753 0.81 1763 0.27 1759 0.09

K+μ *Month * Ecotype 10 1751 0.39 1753 0.33 1763 0.84 1759 0.66

N *Month * Ecotype 10 1751 0.98 1753 0.41 1763 4.77 *** 1759 0.79

P * K+μ * N *Month 5 1751 0.11 1753 0.14 1763 0.09 1759 0.07

P * K+μ * N * Ecotype 2 1751 0.42 1753 2.19 1763 0.19 1759 1.70

P * K+μ *Month * Ecotype 10 1751 0.38 1753 0.19 1763 1.29 1759 0.59

P * N *Month * Ecotype 10 1751 0.16 1753 0.16 1763 0.08 1759 0.61

K+μ * N *Month * Ecotype 10 1751 0.31 1753 0.27 1763 0.28 1759 0.40

P * K+μ * N *Month * Ecotype 10 1751 0.16 1753 0.31 1763 0.02 1759 0.11

ANOVA table for the analyses of the flowering potential (FP) profil�e for the forb, C3 graminoid, C4 graminoid, and legume functional groups in the prairie

communities. Columns include the numerator degrees of freedom (n.d.f.) and denominator degrees of freedom (d.d.f.), F-values, and Bonferroni corrected

p-values

*** p < 0.001

** p < 0.01

*p < 0.05.

https://doi.org/10.1371/journal.pone.0178440.t004
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Fig 3. Flowering potential for plant functional groups. Mean (± SE) flowering potential (FP), the relative

cover of species expected to flower in each month of the prairie growing season. FP for forb (top) and C3
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include month, the nutrient-driven changes in composition did not alter the distribution of

flowering across the growing season and are, therefore, outside the scope of this study [18, 19].

N addition shifted the total community FP profile of the tall-grass prairie by increasing the

cover of species that typically flower in May and June and reducing the cover of those species

that typically flower in September and October. This result is consistent with Hypothesis 2 that

nutrients are disrupting community structure and facilitating an increase in species in an

under-used phenological window. This change is largely driven by an increase of exotic species

and C3 graminoids that flower early in the growing season with a concomitant reduction of

late-flowering native species and C4 graminoids [43]. This general pattern has been found in

other studies of nutrient enrichment; C3 grasses often increase with N addition while the more

nutrient-efficient perennial C4 graminoids typically lose dominance because access to space

and light are preempted [21, 44]. These phenological shifts, which are the result of plant com-

munity compositional change, may be exacerbated by physiological responses to climate

change. Munson and Long [45] examined herbarium data and found that over an interval

of 118 years C3 grasses have accelerated flowering time while C4 grasses have delayed flower-

ing to later in the season. This divergence in flowering time was also greater in more mesic

environments.

By placing these compositional shifts in a phenological framework we can appreciate the

additional consequences for the community-level expression of flowering and reproduction,

which, in turn, affect resource availability for higher trophic levels (e.g., herbivores, pollina-

tors) and ecosystem function [5, 25]. Plants that flower early in the season also begin physio-

logical activity earlier and this increases early demand for nutrients [8] and water, which can

reduce soil storage and amplify drought conditions in subsequent months [46]. The timing

and intensity of disturbances, such as fire, may also be affected because the presence and

amount of senesced biomass shifts in time [47]. The N-induced decrease in plant activity at the

end of the tall-grass growing season can also limit continuity of ecosystem function [48]. C4

graminoids are significant contributors to prairie production [49], nutrient cycling [50], and

mutualistic interactions [9]. If the resources associated with species that are active late in the

growing season are reduced, those organisms that rely on them can have difficulty provision-

ing for winter [5].

The tall-grass prairie ecoregion may be particularly vulnerable to spring-ward shifts in FP

following a disturbance, such as eutrophication. The minimal cover of flowering species early

in the growing season (May and June) provides a window of opportunity for early-flowering

(and thus early growing) species to increase [4, 23]. It is unclear, however, if this sparse early-

season niche is an inherent characteristic of the community [13], or an artifact of modern prai-

rie management and restoration techniques [51].

In contrast, the early season increases in the cover of C3 graminoid and exotic species in the

short- and mixed-grass ecoregions did not change the total community FP profile. Instead,

these increasing groups replaced other spring-flowering species, particularly native species and

C4 graminoids. These ecoregions may be more resistant to nutrient-driven early season pheno-

logical expansion because conditions in earlier months are too harsh for the present species

pool [52]. In contrast, the low cover of short-grass species that flower in the late-season repre-

sents a potentially vulnerable phenological window for species invasion if the proper species

pool and conditions align [25].

graminoid (middle) functional groups are averaged across all prairie ecoregions, as the highest order

interaction for these was nitrogen (N) * month. C4 graminoid FP (bottom) is provided for the tall-, mixed-, and

short-grass prairies as there was an N * month * ecoregion interaction for this group. Asterisks indicate

values that are statistically distinct *** p < 0.001, ** p < 0.01, *p < 0.05 (Bonferroni corrected).

https://doi.org/10.1371/journal.pone.0178440.g003
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The mixed- and short-grass ecoregions may also be buffered from nutrient-induced

changes in the total community FP profile because another resource, such as moisture or noc-

turnal temperature, is more limiting [11, 53]. Therefore, a perturbation of this (unidentified)

limiting resource, in the right season, would be needed to induce phenological shifts in these

plant communities [11, 14, 22].

This analysis is a conservative estimate of phenological change at the community level, as

the published flowering intervals are broad temporally (monthly) and geographically and we

use peak season (August/September) cover to estimate the FP profiles. As some early season

species have senesced by this time, their cover estimates may be low. Therefore, our results

that find treatment-induced increases in the cover of early season species may underestimate

actual change. Actual observation of phenological patterns through high frequency sampling

in the experiments will be necessary to resolve these effects, though the conservative estimates

presented here do suggest an important phenological response to eutrophication.

Conclusions

We found that N addition significantly altered the pattern of flowering across the season for

the tall-grass prairie; specifically there was an increase in the relative cover of species that pro-

duce flowers early in the growing season (May and June) and a decrease in species that typi-

cally flower late in the growing season (September and October). This change supports our

second hypothesis, that disturbance shifts the flowering activity by facilitating an increase of

species that flower in otherwise sparsely occupied temporal niches. The spring-ward shift in

potential phenological activity in the tall-grass ecoregion was driven by the increased abun-

dance of exotic species and early flowering C3 graminoids. Declines in the cover of native spe-

cies and C4 graminoids that flower late in the season were concomitant with the early-season

changes. This temporal shift has consequences for ecosystem services and interactions with

co-occurring species.

In contrast, we found no community-level phenological change occurring in either the

mixed- and short-grass prairie ecoregions. These communities may be buffered from this type

of change because the phenology of their potential invaders does not align with sparsely occu-

pied phenological windows. Instead, invading species are replacing other species in an already

occupied temporal niche. Our trait-based approach suggests that N addition can be a driver of

phenological change in some communities. However, fine-grain sampling may reveal addi-

tional, subtler phenological change in response to eutrophication.

Supporting information

S1 Table. Effect size for presented models. The effect sizes for linear mixed model analyses of

flowering potential for the total community and the exotic, native, forb, C3 graminoid, C4 gra-

minoid, and legumes analyses.
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