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Introduction
Grain yield of cereal crops depends upon the 

number of harvestable kernels and their individual 
weight (KW). In maize (Zea mays L), variations in 
grain yield are primarily explained by variations of the 
first component (Cirilo and Andrade, 1994; Otegui 
et al, 1995), which has a large phenotypic plasticity 
(D’Andrea et al. 2013). Contrary, phenotypic plasticity 
of KW is usually small (op. cit.), evidencing a strong 
genetic control (Cross, 1975; Hallauer and Miranda 
Fo, 1988; Alvarez Prado et al, 2014b). Nevertheless, 
maize KW is very sensitive to reductions in assimi-
late availability during the active grain-filling phase 

(Borrás et al, 2004), with negative impacts on kernel 
quality. For instance, reductions in relative protein 
content and increases in relative starch content were 
reported (Borrás et al, 2002; Cirilo et al, 2011; Mayer 
et al, 2012). Reductions in kernel quality showed to 
be independent of the endosperm type (dent, flint 
and dent × flint). However, the magnitude of the re-
sponses differed depending on the tested genotype, 
suggesting a different genetic control of maize KW 
and kernel composition depending on the endosperm 
type and the explored condition. 

In spite of mentioned knowledge, efforts for link-
ing phenotypic to genotypic information are still 
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scarce and largely limited by adequate research on 
the former (Miflin, 2000). Most papers published dur-
ing the last 15 years with focus on genotyping and 
identification of quantitative trait loci (QTL) included 
a few phenotypic traits (e.g. plant height, KW, qual-
ity properties of grains) with no functional analysis 
of trait determination at the crop level (e.g., Li et al, 
2007, 2009; Gustafson and Leon, 2010; Peng et al, 
2011; Peiffer et al, 2014; Zhang et al, 2014). With a 
few exceptions (Li et al, 2012; Alvarez Prado et al, 
2013b), most of them were set in the field in an ex-
perimental layout (e.g., one-row plots per genotype) 
that is incorrect for addressing traits of interest at the 
crop level, where interaction among plants affects 
results markedly (Connor et al, 2011; Sadras and 
Calderini, 2015). Similarly, the large effort set in the 
number of inbreds and markers included in the analy-
sis has been usually offset by inadequate statistical 
approaches, which avoid phenotypic correlations 
between traits and environmental variability leading 
to overestimate QTL effects and yielding large QTL 
× environment interactions with almost no value for 
marker assisted selection (MAS). 

Recent efforts for dissecting the genetic basis of 
KW determination focused on the variation of its main 
physiological determinants (kernel growth rate, kernel 
filling duration and kernel water relations). A first ap-
proach (Alvarez Prado et al, 2013b) was based on the 
RIL (recombinant inbred lines) population IBM Syn4 
(B73 × Mo17). Inbreds of this family, representative 
of dent temperate germplasm (Gustafson and Leon, 
2010), have a narrow time to anthesis but explore a 
large range of KWs. Field studies were performed 
under non-limiting conditions, and authors (Alvarez 
Prado et al, 2013b) reported (i) a larger genotypic 
variation in kernel growth rate (KGR) than in kernel 
filling duration (KFD), (ii) high and medium heritability 
(H2) for KGR and KFD, respectively, and (iii) transgres-
sive segregation for all evaluated traits. Authors also 
detected the presence of several QTL with consis-
tent effects across years for KW, KGR and maximum 
water content. This result is not surprising from the 
physiological point of view, because a strong phe-
notypic correlation has been shown to exist among 
these three traits (Borrás et al, 2003; Gambín et al, 
2006) whereas there is little correspondence between 
KW to KFD (Gambín et al, 2006) among dent tem-
perate germplasm. In a second approach (Alvarez 
Prado et al, 2014a), authors extended the breadth of 
the analysis to another two RIL populations (N209 × 
Mo17 and R18 × Mo17), which exhibited a positive 
response of KW to KFD due to the presence of pa-
rental inbreds with different physiological strategies 
for building KW. For instance, parental line R18 has 
a very low KW due to a low KGR and a short KFD, 
while parental line N209 shows a high KW due to a 
long KFD and an intermediate KGR. Authors conclud-
ed that the genetic control of grain filling traits was 
predominantly influenced by QTL with small additive 

Materials and Methods
Plant Material

The plant material evaluated in our research was 
a RIL population of 181 lines derived from the cross 
of parental inbreds B100 and LP2. These two inbreds 

effect but intermediate to high background effect. 
Maximum water content and KFD were the traits that 
shared the largest proportion of QTL among tested 
populations (i.e., a reduced background effect). Over-
all results are highly relevant for MAS, because they 
demonstrate that trait dissection based on a robust 
crop physiology background together with multi-trait 
multi-environment (MTME) analysis are critical to 
avoid the usual inconsistencies found in this type of 
studies (Liu et al, 2011; Li et al, 2012). Nevertheless, 
results are based on RIL populations that shared a 
common parental line (i.e., Mo17) and a relatively nar-
row genetic background among inbreds (all temper-
ate dent or dent × popcorn genotypes), alerting on 
the need to validate these findings by using indepen-
dent genetic backgrounds, particularly those of in-
dustrial interest (e.g., specialty corns; Hallauer, 2001). 
Flint germplasm used for breakfast flakes and snacks 
belongs to this group of interest, with the additional 
benefit for farmers of receiving premium prices (Cirilo 
et al, 2011). This germplasm has been of broad inter-
est in Latin America and chiefly in Argentina, which 
produces non-transgenic varieties requested by the 
UE (Greco, 2014). From a physiological point of view, 
flint germplasm usually shows smaller kernel size and 
KW than dent germplasm (Tamagno et al, 2015), and 
a noticeable lower maximum water content (Alvarez 
Prado et al, 2013a). This leads to a higher kernel den-
sity, an important kernel quality aspect for commer-
cialization. 

The objective of current research was to expand 
the analysis of the genetic control of maize KW by 
considering its physiological (KGR and KFD) and 
compositional (protein, oil, starch) determinants in 
a RIL population of broad genetic background, pro-
duced from the cross of B100 (yellow dent of US ori-
gin) and LP2 (Caribbean × Argentine flint origin). LP2 
and B100 have contrasting differences at molecular 
level, the analysis of the genetic structure grouped 
these inbreds in different clusters along successive 
cycles of simulation (Olmos et al, 2014). An additional 
objective was to determine the stability of the ge-
netic control under contrasting growing conditions, 
for which soil nitrogen (N) offer was modified across 
experiments. We hypothesize that the control of final 
KW is affected to a similar extent by both physiologi-
cal determinants (KGR and KFD) when a broad ge-
netic background (Caribbean × Argentine Flint germ-
plasm) is considered. The expected variation respect 
to previous studies will partially modify the genomic 
regions (i.e. QTL) associated with KW determination, 
and consequently expand the spectrum of candidate 
genes.
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differ in breeding era, canopy size, grain yield and 
grain yield components (D’Andrea et al, 2006). They 
also belong to a different heterotic group of origin; 
B100 is US semi-dent germplasm and LP2 was de-
rived from Caribbean × Argentine germplasm (Muna-
ro et al, 2011). 

Crop husbandry and experimental design
Field experiments were conducted at the Per-

gamino Experimental Station of the National Insti-
tute of Agricultural Technology (INTA), Argentina 
(33º56’S;60º34’W) on a Typic Argiudol soil, during 
2009–2010 (Exp 1) and 2011–2012 (Exp 2) growing 
seasons. Contrasting weather and soil N conditions 
were explored during both growing seasons, yielding 
two different environments (E) that were described in 
D’Andrea et al (2016). Briefly, each growing season 
corresponded to an extreme phase of the ENSO (El 
Niño Southern Oscillation) phenomenon, being «El 
Niño» in 2009 and «La Niña» for 2011 (Climate Pre-
diction Center). About topsoil conditions (0-40 cm), 
initial soil N availability was high in Exp 1 (72.6 kg 
N-NO3 ha-1), and very low in Exp 2 (11 kg N-NO3 ha-1). 
Organic matter level did not differ between experi-
ments (2.06 - 2.08%). No N fertilizer was added to the 
crops, and phosphorus level was always high (> 30 
ppm). Water deficit was always prevented by means 
of sprinkler irrigation, used to keep the uppermost 
1 m of soil near field capacity throughout the cycle. 
Experiments were kept free of pests, weeds and dis-
eases.

A total of 181 inbreds and their parental lines were 
distributed in a completely randomized block design 
with two replicates. Each plot had three rows of 5.5 
m length and 0.7 m between the rows. Stand den-
sity was always 7 plants m−2. Sowing date was Octo-
ber 21 in 2009 (Exp 1). Because of the expected hot 
mid-summer weather associated to «La Niña» phase 
of the ENSO in the Pampas region of Argentina dur-
ing 2011-2012, sowing was delayed for flowering to 
start at the end of January, when solar radiation and 
temperature start to decline (Otegui et al, 1996). Thus 
inbreds were grouped in three categories (early, inter-
mediate and late) based on anthesis dates registered 
in Exp 1, and were sown on 14 (late), 18 (intermediate) 
and 23 November 2011 (early) in Exp 2. This strategy 
helped synchronize the flowering event of the whole 
experiment (Liu et al, 2011; D’Andrea et al, 2016), and 
in this way minimized possible confounded effects of 
differences in weather conditions between early and 
late inbreds associated to a late sowing date (Otegui 
et al, 1996). All plots were hand planted at a rate of 
three seeds per site and thinned to one plant per site 
at V3 (Ritchie et al, 1992).

In summary, we evaluated genotypes in two con-
trasting environments: (i) a potential condition in Exp 
1, associated with an early sowing date (Otegui et al, 
1996) and high initial soil N, and (ii) a non-potential 
condition in Exp 2, associated with a delayed sowing 
date and low initial soil N.

Measurements
Weather conditions were monitored at the experi-

mental site (Campbell Scientific Inc, Logan, UT), and 
daily records obtained for mean (Tmean) and maxi-
mum (Tmax) air temperatures (in ºC), photosyntheti-
cally active radiation (in MJ day-1), rainfall (in mm), 
and potential evapotranspiration (PET, in mm). Mean 
temperature was calculated as the average of hourly 
air temperatures. Thermal time (TT, in ºCd) was com-
puted daily as the degrees above a base temperature 
of 0ºC from silking to physiological maturity (Muchow 
et al, 1990); daily TT values were accumulated for the 
post-silking period.

Thirteen plants were tagged in each plot, 5 of 
them at ca. V5 and the rest at the beginning of an-
thesis. The first group corresponded to consecutive 
plants located near the middle of the plot, and was 
used for the (i) non-destructive assessment of anthe-
sis (at least one anther visible in the tassel) and silk-
ing dates (at least one silk visible in the apical ear), 
and (ii) the destructive assessment of mean individual 
KW (KWM, in mg) and kernel composition (as protein, 
starch, and oil concentration) after physiological ma-
turity of each inbred (black layer in kernels of the mid 
portion of the ear). Kernel composition (in g kg-1 of 
each component on a dry matter basis; Borrás et al, 
2002) was established by near-infrared transmittance 
(Infratec 1227, Tecator, Sweden). Silking date was 
also recorded for each plant of the second group, and 
apical ears of these plants were collected on 18, 23, 
28, 33, 38, 43, 48, and 53 days after silking. A total of 
15 kernels were removed from the same position of 
each sampled ear (between spikelets ten and fifteen 
from the bottom of the apical ear) and oven dried at 
70ºC for at least 96 h. Because KW decreases from 
proximal (bottommost) to distal (topmost) ear posi-
tions (Seebauer et al, 2010), final KW based on ears 
of this second group was defined as potential (KWP, 
in mg). KWP is expected to be larger than KWM. Evo-
lution of KWP was assessed, and data was used for 
computing KGR during effective kernel filling (in mg 
ºCd-1) and KFD between silking and maximum KW (in 
ºCd). For this purpose, a bi-linear model [Eqs (1) and 
(2)] was fitted to the data set of each plot (Borrás and 
Otegui, 2001); i.e., to each G × E × replicate combi-
nation.

KW = a + b TT for TT ≤ c [1]
KW = a + b c for TT > c [2]

where a is the y-intercept (in mg), b is KGR (in mg 
ºCd-1), and c is KFD (in ºCd). The iterative optimiza-
tion technique of GraphPad Prism version 5.0 (graph-
pad.com/scientific-software/prism.htm) was used for 
model fitting, and adjusted r2 values ranged from 0.88 
to 0.99 in Exp 1 and from 0.82 to 0.99 in Exp 2. 

Statistical analyses
Phenotypic evaluation

A tester inbred was used to evaluate spatial het-
erogeneity (Gilmour et al, 2006), and no trend was 
detected. 
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Frequency distributions were computed for each 
trait to evaluate the range and type of variation pro-
duced by genotypes (D’Agostino Pearson normality 
test). The genotypic variation within each experiment 
was estimated by means of the standard coefficient 
of variation (CVS; quotient between the standard de-
viation of the RIL population and its mean) and the 
maximum coefficient of variation (CVM; quotient be-
tween the maximum range detected among inbreds 
of the RIL population and its mean).

Trait variability was individually evaluated by fit-
ting a linear mixed model (Eq 3). The phenotypic ob-
servation of measured trait Yijk on genotype i in repli-
cate k of environment j was modeled as in D’Andrea 
et al (2008): 

Yijk = m + Gi + Ej + (R/E)jk + (GE)ij + eijk [3]
where m is the general mean, G is the effect of the ith 

genotype, E is the effect of the jth experiment (envi-
ronment), R is the effect of the kth replicate nested 
in the environment, GE is the G×E interaction effect, 
and e is the residual error. Genotype and G×E inter-
action effects were treated as random, while E and 
R effects were treated as fixed (Alvarez Prado et al, 
2013b). 

Broad sense heritability (H2) was estimated from 
the components of variance as in Eq 4 (Holland et 
al, 2003).

H2 = s2
G / (s2

G + s2
GE/j + s2

e/jk) [4]
where s2

G is the genetic variance, s2
GE is G×E interac-

tion variance, s2
e is the error variance, j is the number 

of environments and k is the number of replicates. 
For QTL analysis, phenotypic data were ana-

lyzed considering trait correlation and environmental 
variability using a mixed model approach following 
Malosetti et al (2008). Our MTME data set consisted 
of I genotypes evaluated in J environments on K traits 
repeated in L blocks (with I = 181, J = 2, K = 7, L = 2). 
An N × 1 vector «y» was defined, with N = IJKL that 
contains all the observations sorted by trait within en-
vironment and within genotype in each block. Geno-
types were assumed random and trait × environment 
(TE) combinations and blocks nested within TE were 
considered as fixed. 

Different variance-covariance models for both 
matrixes were assumed in order to select the most 
suitable for our data sets. We tested 7 different mod-
els: (i) variance component, (ii) compound symme-
try, (iii-v) first order factor analytic «0», «1» and «2», 
(vi) heterogeneous compound symmetry, and (vii) 
unstructured model. The choice of the best model 
was based on a goodness of fit criterion such as the 
Bayesian Information Criterion (BIC; Schwarz, 1978). 
The compound symmetry model showed the lowest 
BIC value of the evaluated structures.

Considering the best variance-covariance struc-
ture for our data, the best linear unbiased predictor 
(BLUP) of each genotype in each environment was 
estimated for reducing uncontrolled trait variation 
for QTL mapping (Borevitz et al, 2002; Zalapa et 

al, 2007). These analyses were performed with the 
MIXED procedure of SAS v. 8.2 (SAS Institute, 1999).

Linear regression analysis was applied to the re-
lationships between variables. General trends were 
established for the correlations between measured 
traits using R software Version 2.15.2 for Windows (R 
Development Core Team, 2011). 

Genotypic evaluation and genetic map construction
Leaves were harvested from five random plants of 

each 181 RIL and both parents at ca. V12. Leaf tissue 
was lyophilized and DNA extractions were done ac-
cording to Kleinhofs et al (1993). 

Simple sequence repeat (SSR) and single nucle-
otide polymorphic (SNP) markers were used to ge-
notyping RIL population. Uniformly distributed SSR 
markers across the ten maize chromosomes were se-
lected. Primer sequences were obtained from Maize 
Gene Data Base (www.maizegdb.org). From a total of 
392 run markers, 117 were used for RIL characteriza-
tion. For the other hand, an Illumina microchip with 
96 SNPs associated with genes related to N metab-
olism and abiotic stress was designed. Eight SNPs 
polymorphic and with high quality were used for RIL 
characterization.

Prior to linkage analysis, an FDR test was used to 
verify 1:1 Mendelian segregation for each molecular 
marker (Kearsey and Pooni, 1996). Markers show-
ing a distortive segregation were removed from the 
analysis. Linkage maps were constructed using GQ-
Mol version 2008.6.1 (Schuster and Cruz, 2008). Map 
distances were computed by means of the Kosambi 
function (Kosambi, 1944). Linkage maps covered a 
total distance of 1126.2 cM. 

Multi-Trait multi-environment QTL analysis
Phenotypic means (BLUPs) calculated using the 

mixed model approach were used for QTL map-
ping. We followed a procedure divided in two main 
steps: (i) Genome wide scan with tests for joint QTL 
by considering trait and environment correlations, 
and (ii) final multi-QTL model by testing the effects 
and significance of each QTL into a unique model. 
Our procedure was performed by means of WinQTL 
Cartographer V2.5 (Wang et al, 2012). The multi-trait 
mapping procedure, which implements composite 
interval mapping, was used for the first step. In the 
composite interval mapping, stepwise regression 
analysis of Model 6 from WinQTL Cartographer V2.5 
(Wang et al, 2012) was performed. A threshold of 0.05 
for input and output was established for selecting the 
putative QTL to be used as cofactors. We used a 
window size of 10 cM for removing temporarily the 
marker effects when scanning the chromosome. The 
threshold for accepting the presence of a significant 
joint QTL was LOD = 7, with scanning intervals of 2 
cM between markers and a putative QTL. Quantita-
tive trait loci positions were assigned to relevant re-
gions at the point of maximum LOD. 

Quantitative trait loci positions detected in step 
1 were regarded as candidate QTL, and constitut-
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Results

Weather conditions
Growing seasons differed markedly in overall 

weather conditions. The El Niño phase of the ENSO 
registered during Exp 1 was accompanied by in-
creased rainfall (886 mm) and reduced Tmax (27.8ºC) 
as compared to Exp 2 (563 mm and 29ºC, respec-
tively). Nevertheless, mean rainfall (244 mm and 249 
mm, respectively) and Tmean (23.2ºC and 23.0ºC, 
respectively) during the flowering period did not differ 
markedly between experiments, and delayed flower-
ing of Exp 2 exposed the crop to already declining 
levels of PET values (5.7 mm day-1 for Exp 1 and 4.7 
mm day-1 for Exp 2).

Phenotypic variability for KW determination and 
composition traits

For all traits, the G component of variance was 
larger than the G×E interaction component (Table 1). 
The G effect accounted for the highest portion of the 
treatment variation (excluding residual) for starch, 
KWM, KWP and KGR (84%, 78%, 73%, and 68%, re-
spectively), while for KFD, protein and oil concentra-

ed the initial model for step 2. In this final step, we 
constructed a multi-QTL model by using the multi-
trait multiple interval mapping procedure. By giving 
an initial model, the procedure estimated the model 
parameters, refined the estimates of QTL positions 
within intervals, tested the significance of all parame-
ters by using a LOD = 3 for individual traits, searched 
for more QTL and finally calculated the genetic vari-
ance explained by the model (Basten et al, 2004). We 
used the likelihood ratio test (LRT) to compare the 
significance of each model refinement:

LRT= 2 (logL1 - logL0) [5]
where L1 and L0 were the likelihood under the 

refined and the initial model, respectively. The differ-
ence between log-likelihoods was multiplied by a fac-
tor 2, so it distributes as the c2 statistic. This was then 
assessed for statistical significance using standard c2 
significance levels. The degrees of freedom for the 
test were equal to the difference in the number of pa-
rameters between the refined and the initial model.

Digenic epistasis of molecular markers was esti-
mated using a linear regression model (Li et al, 2008) 
with the QTL IciMapping software (available from 
www.isbreeding.net). A LOD score of 3.5 and a step 
size of 10 cM for improving detection accuracy were 
used (Zhang et al, 2012).

Candidate genes
Candidate genes were localized in the regions de-

limited by flanking markers to each detected QTL. In 
a first step, the coordinates of those markers were 
established in the reference genome of maize (B73 
RefGen.v2 sequence) using the «Locus Pair lookup» 
option of the Maize Gene Data Base (www.maizeg-
db.org) or the «Marker Search» option of the Panzea 

Base (www.panzea.org). Genes in those regions were 
searched in the «Filtered Gene Set» and the «Working 
Gene Set» (maizesequence.org) data bases, and their 
sequences were systematically searched by means 
of Blastn for EST (Expressed Sequence Tags) with 
a 0.01 threshold. We considered candidate genes 
those with an E-value ≤ e-20 for Zea mays. Gene prod-
ucts were searched in the NCBI (www.ncbi.nlm.nih.
gov) data base, and were identified based on homol-
ogy (≥ 70%) with candidate genes for Zea mays, Ory-
za sativa or Arabidopsis thaliana.

Table 1 - Descriptive statistics, ANOVA and heritability level (H2) of evaluated traits. Data correspond to 181 RIL and their pa-
rental inbred lines (B100 and LP2) cropped at two contrasting environments.
   Potential kernel  Kernel growth Kernel filling  Mean kernel Protein Oil Starch 
   weight (mg)  rate (mg ºCd-1) duration (ºCd)  weight (mg)  (%)  (%)  (%)

Experiment 1 B100† 253 0.32 1071 186 10.3 4.8 70
  LP2 231 0.39 896 172 9.67 4.13 71.1
  RIL  240 0.35 990 204 10.4 4.68 70.1
  Range‡ 122-355 0.24-0.47 675-1187 106-292 8.03-13.2 3.57-5.64 68.2-72.5
  CVS-M§ (%) 15.3-97.1 12.0-65.7 8.4-51.7 16.9-91.2 9.4-49.7 8.1-44.2 1.2-6.1
  Normality¶ ns ns -0.83/2.32 ns ns ns ns
        
Experiment 2 B100 228 0.36 969 154 9.59 5.91 66.8
  LP2 208 0.38 848 153 7.44 5.47 68.2
  RIL  249 0.37 982 172 8.91 5.52 67.5
  Range 170-337 0.25-0.51 795-1161 99-230 6.7-11.8 4.04-6.49 65.1-71
  CVS-M (%) 12.2-67.1 13.0-70.3 6.7-37.3 16.0-76.2 12.1-57.2 7.7-44.4 1.6-8.7
  Normality ns ns ns ns ns ns 0.61/0.69
        
Source of  G# 669±100†† 0.00081±0.00018 1567±446 587± 87  0.47± 0.09 0.085±0.016 0.37±0.08 
variation G×E‡‡ 252±53.5 0.00038±0.0002 1414±486 169±45.9 0.32±0.07  0.053±0.011 0.073±0.08
  Residual 413±31.6 0.00167±0.0001 5248±402 429± 32.8 0.53±0.04 0.083±0.006 1.08±0.08
  Year effect <0.001§§ <0.001 ns <0.001 <0.001 <0.001 <0.001
        

   H2  0.73 ± 0.04 0.56 ± 0.07 0.42 ± 0.09 0.74 ± 0.04 0.59 ± 0.06 0.62 ± 0.06 0.53 ± 0.07
†Mean values of parental inbreds (B100 and LP2) and the RIL population; ‡Minimum and maximum values of the RIL popula-
tion; §Coefficients of variation (standard-maximum); ¶D’Agostino Pearson normality test. Values represent skew/kurtosis coef-
ficients when P≤ 0.05; ns indicates not significantly different from normal (P > 0.05); #Significant for all traits at P < 0.001; 
††Expected mean square ± s.e. of random effects; ‡‡Significant for all traits at P < 0.01, except for starch concentration; §§P 
level of significance for the fixed effect of years; ns: not significant. 
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tions the G×E component showed the highest varia-
tion (47%, 41%, and 39 %, respectively). There were 
differences (P < 0.001) between experimental years 
in all evaluated traits except for starch concentration 
(mean values of 70.1% in Exp 1 and 67.5% in Exp 2). 
Nevertheless, the environment had (i) minor effects (< 
5%) on KWP, KGR, and KFD (Table 1), and (ii) major 
effects (> 5%) on KWM, protein and oil concentration 
(Table 1).

Potential and mean KW, and KGR had a normal 
frequency distribution (P > 0.05) in both years (Table 
1, Figure 1). Contrary, a significant (P < 0.001) nega-
tive skew was detected for KFD in Exp 1 (Table 1, 
Figure 1) due to the presence of six lines with KFD ≤ 
800ºC day. Differences in frequency distribution were 
also detected among kernel composition traits; pro-
tein and oil concentrations had a normal frequency 
distribution in both years (Table 1, Figure 2), where-
as starch concentration presented a significant (P < 
0.001) positive skew in Exp 2 due to a set of inbred 
lines with high starch values (> 72%). The wide range 
of variation registered for all measured traits in the 
RIL population was accompanied by a significant (P 
< 0.05) transgressive segregation (Table 1); i.e., pres-
ence of inbreds of the RIL population that exceeded 
parental phenotypic values in either a negative or 
positive direction. 

As expected, dent parental inbred (B100) always 
had larger KWP (~ 9.5 %) and KWM (0.7-8 %) values 

than the flint parental inbred (LP2; Table 1), but both 
inbreds reached the highest levels of these traits dur-
ing Exp 1. The trend described for parental inbreds 
was also observed for mean KWM of the RIL family, 
as commented above. However, no difference in KWP 
was observed between experiments (Table 1). Geno-
typic variation for KWM and KWP was much larger un-
der the favorable environmental conditions of Exp 1 
than under the poor environment of Exp 2 (CVM Exp 
1 > CVM Exp 2).

For both parental inbreds, the environmental ef-
fect was (i) similar for KFD, though this trait was al-
ways larger for B100 than for LP2 (Table 1), and (ii) 
less clear for KGR, though this trait was always larger 
for LP2 than for B100 (Table 1). Mean values of the 
physiological determinants of KW did not differ mark-
edly between years for the RIL family, but important 
crossovers (i.e., change in ranking) were detected 
among inbreds (G×E effect, Table 1). For instance, 
KFD of inbred 7534 was larger than that of inbred 
7663 in Exp 1 (963 ºCd and 684 ºCd, respectively), 
and the opposite trend was observed in Exp 2 (822  
ºCd and 912 ºCd, respectively). The genotypic varia-
tion computed for KGR and KFD (Table 1) tended to 
be smaller than that registered for KWs, as well as 
the effect of the environment on this variation (CVM 
values; Table 1).

Regarding kernel composition, parental inbreds 
did not differ markedly for these traits under favorable 
conditions of Exp 1 (Table 1), but protein concentra-

Figure 1 - Phenotypic variability and correlation for kernel 
growth rate (KGR), kernel filling duration (KFD) and poten-
tial kernel weight (KWP). Frequency distributions are in the 
diagonal, Pearson correlation values above the diagonal 
and regression analysis plots below the diagonal. Data cor-
respond to best linear unbiased predictors of 181 RIL and 
its parental inbred lines (B100 and LP2) cropped at two con-
trasting environments (black symbols for Exp 1 and white 
symbols for Exp 2). ns, not significant, *** for P < 0.001.

Figure 2 - Phenotypic variability and correlation for mean 
kernel weight (KWM), protein, oil and starch concentrations. 
Frequency distributions are in the diagonal, Pearson corre-
lation values are above the diagonal, and regression analy-
sis plots are below the diagonal. Data correspond to best 
linear unbiased predictors of 181 RIL and its parental inbred 
lines (B100 and LP2) cropped at two contrasting environ-
ments (black symbols for Exp 1 and white symbols for Exp 
2). ** for P < 0.01; *** for P < 0.001.
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tion of LP2 decreased markedly under less favorable 
conditions of Exp 2 (Table 1). For these inbreds, pro-
tein and starch concentrations were higher in Exp 1, 
whereas oil concentration was higher in Exp 2. For 
the RIL family, mean values of these traits followed 
the same trend described for parental inbreds, with 
increments for protein (+16.7%) and starch (+3.4%) 
during Exp 1 and an increase for oil (+17.9%) during 
Exp 2. Genotypic variation among inbreds for these 
traits was much larger for protein and oil than for 
starch (Table 1). In spite of the large genotypic effect 
on starch concentration, this trait exhibited the high-
est residual variation, which reduces the genotypic 
variation and the environmental effect (Table 1).

Phenotypic correlations and broad sense heritabil-
ity

Based on KWP, both physiological determinants 
were related to KW determination (Figure 1), show-
ing a stronger association with KFD (r = 0.69, P < 
0.001) than with KGR (r = 0.60, P < 0.01), while no 

association was detected between KFD and KGR (r = 
0.09, P > 0.05). Based on KWM, a positive relationship 
was observed with protein concentration (r = 0.56, P 
< 0.001) and a negative one with oil (r = -0.31, P < 
0.001) and starch (r = -0.16, P < 0.01) concentrations 
(Figure 2). Additionally, the association between ker-
nel composition traits was always negative; protein 
was moderately related to oil (r = -0.44, P < 0.001) 
and starch (r = -0.38, P < 0.001), and oil was slightly 
related to starch (r = -0.16, P < 0.01) (Figure 2). 

Heritability values (Table 1) were (i) highest for 
KWM (0.74) and KWP (0.73), (ii) intermediate for oil 
concentration (0.62), protein concentration (0.59), 
KGR (0.56) and starch concentration (0.53), and (iii) 
low for KFD (0.42).

QTL detection
The proportion of the total genetic variance ex-

plained by the multi-QTL model ranged from approxi-
mately 27 to 71% across traits and environments 
(Figure 3). On average, KWP, KWM, protein concentra-
tion and KFD were the traits with the highest propor-
tion of explained genetic variance (62%, 59%, 54%, 
and 52%, respectively), followed by KGR, starch 
concentration and oil concentration (45%, 41%, and 
38%, respectively). The heterogeneity of variance 
across environments is associated with the existence 
of G×E interaction effects (Table 1). 

Based on initial MTME analysis, ten putative joint 
QTL were detected for KW determination and com-
position traits (Figure 4 and Supplementary Table 1). 
All ten putative QTL detected by the joint analysis 
were regarded as candidate QTL, and included in 
the initial model of the multi-QTL model (i.e., no can-
didate QTL was eliminated from the analysis). Nine 
QTL were associated with variations in KWP, KWM, 
KGR and oil concentration, eight QTL with variations 
in protein and starch concentration, and seven QTL 
affected KFD (Figure 4).

Detected QTL generally showed inconsistent ef-
fects across environments, which is in line with the 
heterogeneity of variance across environments. In-
consistent effects were the product of different types 
of G×E effects. For example, QTL for KWP, KGR, 
KFD, oil and starch concentrations had changes in 
effect size and sign between experiments, i.e. cross-
over interactions. For all traits there were QTL with 
significant effects in one of the two explored environ-
ments. In spite of mentioned changes in effect size, 
most QTL were significant and of consistent action 
(i.e. sign) in both environments (Figure 4). Among 
these QTL, we identified those with remarkable effect 
(e.g. larger than 1% based on the trait mean) that are 
summarized in Supplementary Figure 1. The QTL 7 
on chromosome 5 exceled from all the rest due to its 
large effects on most traits of interest, except on oil 
and starch contents. 

The positions and effects of the different QTL can 
help to understand the causes of genetic correlations 
between traits. Potential kernel weight had a strong 

Figure 3 - Total genetic variance for measured traits in a fam-
ily of 181 RIL and its parental inbred lines (B100 and LP2) 
cropped at two contrasting environments (Exp 1 on the left 
and Exp 2 on the right). The proportion of explained vari-
ance by the final multi-QTL model is indicated in the white 
column with its respective value indicated in %.
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positive response (r2 ≥ 0.60) to KFD and KGR (Fig-
ure 1), and consistent genetic correlations supported 
these phenotypic trends. For instance, its correlation 
with KFD was evident in QTL located on (i) chromo-
somes 5 and 7 in both experiments, and (ii) chromo-
somes 1 (QTL 2) and 4 (all QTL) under one of them 
(Figure 4). Its correlation with KGR was supported by 
QTL located on (i) chromosomes 1 (QTL 2), 5, and 
10 in both experiments, and (ii) chromosomes 2, 4 
(QTL 4 and QTL 6), 7 and 9 under one of them (Figure 
4). In agreement with the lack of phenotypic correla-
tion between KGR and KFD (Figure 1), the majority 
of the genetic correlations were inconsistent across 
environments for both traits, except for that found on 
chromosome 5. The phenotypic correlation of KWM 
with its components (Figure 2) was moderate and 
positive for protein, and low and negative for oil and 
starch. For protein concentration, a genetic correla-
tion with KWM was established on chromosome 5 that 
held across environments (Figure 4) and was consis-
tent with that of KWP and its physiological determi-
nants (KGR and KFD). Additional genetic correlations 
between protein concentration and KWM were detect-
ed on chromosomes 4 (QTL 5 and QTL 6) and 7 under 
one of the two explored environments. Oil and starch 
concentration QTL showed almost no co-localization 
with any KWM related QTL. However, several QTL for 
protein and oil concentration co-localized with QTL 

for KGR and KFD, respectively; both showing similar 
effect sign (Figure 4). 

A total of 42 pairs of markers with significant inter-
action effects that were stable across environments 
were detected (Supplementary Table 2). Except for 
starch, all traits showed between one and two epi-
static interactions that involved one main effect mark-
er. Interaction effects were negative for all traits with 
the exception of KFD, which showed both positive 
and negative effects. Remaining epistatic interactions 
involved loci that were individually non-significant. 
Considering all traits, individual epistatic interactions 
explained from 3.0% to 5.3% of the phenotypic varia-
tion (Supplementary Table 2).

Candidate genes associated with QTL
Genes were identified for the intervals of the ten 

detected QTL and classified depending on their pre-
dicted function (Table 2). Most intervals between 
flanking markers of mentioned QTL ranged between 
2 and 16 Mbp. The QTL 5, 8, and 9 had intervals 
larger than 70 Mbp and gene number within flanking 
markers too large for a precise identification of candi-
date genes and consequently were discarded.

A total of 4002 genes were identified across the 
ten QTL, but this number dropped to 1338 when QTL 
5, 8 and 9 were removed from the analysis (Table 
2). Most of the latter (68%) had unknown functions; 
however, 422 genes could be associated with differ-

Figure 4 - Chromosomal location of QTL detected for potential and mean kernel weights (KWP and KWM, respectively), kernel 
growth rate (KGR), kernel filling duration (KFD), and protein, oil and starch concentrations. QTL are represented by bars with a 
connector to the corresponding position on the chromosome. The two columns represent the additive effects of the QTL in each 
environment (Exp 1 on the left and Exp 2 on the right column), in units of the corresponding trait (KWP and KWM: in mg; KGR: 
in mg °Cd-1; KFD: in °Cd; Protein, Oil ,and Starch concentrations: in %). Additive effects correspond to the LP2 parental allele.
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ent functions: 25% were related to basal metabo-
lism, 1.9% to protein metabolism, 1.6% to hormone 
or signal transduction, and 3.4% to other processes 
(carbohydrate or lipid metabolism, cell division, plant 
defense and stress response).

Among genes involved in cell division and ex-
pansion, those that regulate cytoskeleton organiza-
tion (actin depolymerizing factor and kinesin) and the 
metabolism of cytokinins (Cis-Zeantin O-Glucosyl-
tranferase 1 and Cytoquinin O-Glucosyltranferase 2) 
are located within the intervals of QTL 1, 3, 6, 7, and 
10. Similarly, cell number regulator factors 1 (CNR1) 
are within the interval of QTL 6 (chromosome 4), the 
auxin regulated gene ZAR1 involved in organ size 
corresponds to QTL 10 (chromosome 10), the alpha-
expansin 13 gene to QTL 2 (chromosome 2), and the 
beta-expansin 3 gene to QTL 7 (chromosome 5).

Genes involved in sugars, proteins and lipids me-
tabolism could be documented for most detected 
QTL. For proteins there are genes regulating amino 
acids synthesis (asparagine syntetase, tryptophan 
synthase, acetylglutamate synthase, threonine syn-
thase, homoserine dehydrogenase) as well as genes 
regulating proteins synthesis (elongation factor Tu 
and translation initiation factor). Moreover, genes 
that promote zeins synthesis (Z1A alpha zein protein 
and zein-alpha 19A2), which dominate the group of 
reserves proteins in maize kernels, are in the interval 
of QTL 4. Some genes involved in protein degrada-
tion by the ubiquitin-proteasome proteolitic path-
way (Proteasome subunit α type, RING-type pro-
tein, Ubiquitin-protein ligase, ARM repeat-containing 
protein containing family protein and F-box domain) 
were detected in most of QTL intervals of interest. 

Within the intervals of QTL 4 we identified genes 
involved in sugar transport, as Glucose-6-phosphate/
phosphate translocator 2 and Monosaccharide trans-
port protein 2.

The evaluated RIL family had a broad variation in 
KW, its physiological determinants and kernel com-
position. The transgressive bi-directional segregation 
detected for all measured traits stemmed from the 
recombination of QTL with antagonist effects (Ries-
eberg et al, 2003), which yields extreme phenotypes. 
The described variability allowed the identification of 
inbreds with similar KWP obtained from the combina-
tion of contrasting KGR and KFD (data not shown), a 
result that had been previously documented for this 
RIL population (Piedra et al, 2010; Piedra, 2011).

Based on H2 values computed for KW and its 
components, a curious result rise where H2 comput-
ed for KW was larger than for its physiological and 
compositional determinants. This fact does not sup-
port the contention of an improved genetic prediction 
based on trait dissection, in agreement with Alvarez 
Prado et al (2013b) and Lee et al (2005).

The variation observed in KWP was strongly as-

Discussion

sociated with both physiological determinants of 
KW (i.e., KGR and KFD). This result deserves further 
analysis, because it is (i) partially different to previous 
evidence obtained with commercial maize hybrids 
(Borrás and Otegui, 2001; Gambín et al, 2006) and 
with the mapping population derived from B73×Mo17 
(Alvarez Prado et al, 2013b), which found no link be-
tween KW and KFD, and (ii) in agreement with other 
studies based on inbred lines (Borrás et al, 2009) 
as well as on other mapping populations derived 
from Mo17 (Alvarez Prado et al, 2014a). This could 
be explained by the epistatic interactions detected 
between loci with significant main effects and loci 
without significant main effects. The QTL effects that 
exhibit interactions with unlinked genes may be al-
tered dramatically when they are incorporated into a 
genetic background different from the one in which 
they were mapped (Holland et al, 1997). Contrary, we 
confirmed the lack of phenotypic correlation between 
KGR and KFD (Borrás et al, 2009; Borrás and Gambín, 
2010; Alvarez Prado et al, 2013b; Alvarez Prado et al, 
2014a), which was supported by the lack of common 
QTL for these traits. These results also support the 
idea of their independent genetic control, and conse-
quently the possibility of their independent selection. 
Individual QTL co-localization between KWP and its 
physiological components demonstrate that no sin-
gle trait is an exclusive determinant of KW (Figure 4). 
In other words, selection in breeding programs can 
focus in both physiological determinants of KW with 
no negative trade-off effects. The existence of a co-
localizing QTL for KW and its physiological determi-
nants, however, may be irrelevant (or even negative) 
under environments with a short growing season, 
as those at high latitudes and/or altitudes. In these 
environments, where exploitable cycle duration for 
adequate crop fitness is reduced, KW is expected 
to increase due to enhanced KGR and no variation 
in KFD. Consequently, a co-localizing QTL for both 
traits is an unwanted alternative. The opposite is true 
when selecting germplasm for environments with a 
long growing season, like those of intermediate lati-
tudes and the tropical ones.

About compositional traits, a marked variation 
was observed in response to contrasting growing 
conditions explored in current research. The varia-
tion was larger in protein and oil concentrations 
than in starch concentration. There was, however, 
a positive phenotypic correlation between KWM and 
protein concentration, which was supported by a co-
localizing QTL for both traits in chromosome 5 (QTL 
7). This result proposed a common genetic control 
(e.g., linkage or pleiotropic effects) between these at-
tributes for the current RIL population. Similarly, a co-
localizing QTL in chromosome 1 (QTL 1) with additive 
effect >0 for oil concentration and additive effect <0 
for protein concentration is consistent with the nega-
tive relationship detected for these traits. This finding 
supports the reported trade-off found between these 
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traits for some oil crops (Triboi and Triboi-Blondel, 
2002). Nevertheless, other co-localizing QTL highlight 
the possibility of a positive simultaneous selection for 
oil and protein concentrations. For example, the QTL 
8 in chromosome 7 for oil concentration and KWM to-
gether with the QTL 7 in chromosome 5 for protein 
concentration and KWM, all with additive effect >0. 
These considerations deserve further analysis.

Registered G×E interaction effects modified the 
number of significant QTL between experiments, 
which was smaller in the environment with reduced 
initial soil N (Exp 2) than in the environment with high 
N (Exp 1). In this context, gene expression may vary 
depending upon the environment (i.e. QTL×E ef-
fect). Moreover, estimated QTL position may vary 
depending upon mentioned G×E effect as well as 
upon the genetic background and the experimental 
error (Wassom et al, 2008). Nevertheless, an impor-
tant number of QTL were consistent across evaluated 
environments, which is a remarkable result that adds 
robustness to detected QTL. In addition, low CVS val-
ues give confidence on the high precision of the per-
formed phenotyping, reducing the error in QTL detec-
tion. The fitted QTL model explained a considerable 
proportion of the genetic variance (> 50% for most 
traits), larger than in previous research based on a 
similar approach (Malosetti et al, 2008; Alvarez Prado 
et al, 2013b).

Interestingly, almost all QTL identified in current 
multi-QTL model matched previously reported QTL. 
Among those with largest magnitude, as QTL 7 in 
chromosome 5 and QTL 8 in chromosome 7, the for-
mer matched QTL registered for (i) KW and KGR in a 
dent × popcorn Chinese family (Li et al, 2012), (ii) KWM 
in a Flint × iodent French family (Hirel et al, 2001), 
and (iii) starch in a high oil × dent family (Zhang et al, 
2008). Similarly, there was a relevant coincidence in 
QTL 8 for KW and KGR (Li et al, 2012; Alvarez Prado 
et al, 2013b) as well as for protein content (Zhang 
et al, 2008). Additionally, the QTL for protein (Schön 
et al, 1994; Zhang et al, 2008), starch (Zhang et al, 
2008), KW (Li et al, 2012) and KGR (Li et al, 2012; Al-
varez Prado et al, 2014a) detected on chromosome 1 
co-localized with the consistent QTL 1 for protein, oil 
and KGR detected in current study. A reported QTL 
for KW (Schön et al, 1994) and protein (Séne et al, 
2001) matched with our QTL 3. On chromosome 4, 
several QTL were reported for quality traits and KW 
physiological components, which co-localized with 
our findings: (i) for oil concentration on QTL 4 (Zhang 
et al, 2008), QTL 5 (Séne et al, 2001; Zhang et al, 
2008) and QTL 6 (Séne et al, 2001), (ii) for starch con-
centration on QTL 4 (Wassom et al, 2008; Zhang et 
al, 2008) and QTL 5 (Zhang et al, 2008), (iii) for pro-
tein concentration on QTL 5 (Wassom et al, 2008), 
and (iv) for KWP and KGR on QTL 4 (Alvarez Prado 
et al, 2013b). Also, a QTL for KW on chromosome 9 
was reported (Séne et al, 2001), in agreement with 
our consistent QTL 9 for this trait. Finally, Li et al 

(2007, 2012) detected a QTL for KW, Alvarez Prado 
et al (2014a) for KGR and KW, and Li et al (2009) for 
protein and starch concentration in the same region 
that our QTL 10. There was, however, no coincidence 
with previous reports for QTL representative of KFD. 
For this trait, current research detected two QTL (one 
on chromosome 5 and the other on chromosome 7) 
linked to KW, whereas previous studies found only 
one QTL that co-localized for KW and KFD, on chro-
mosome 5 for the B73 × Mo17 RIL population (Al-
varez Prado et al, 2013b) and on chromosome 1 for 
the N209 × Mo17 RIL population (Alvarez Prado et 
al, 2014a). 

The precise phenotyping mentioned before, the 
consistency of detected QTL across tested environ-
ments, their coincidence with QTL reported in pre-
vious research and the high proportion of genetic 
variance explained by the fitted QTL model gave high 
reliability to our findings. Map saturation with markers 
within the intervals of QTL 5, 8, and 9 would optimize 
their position, adding precision to the map and im-
proving the identification of candidate genes (Collard 
et al, 2005; Boopathi, 2013). Independently of this 
consideration, some candidate genes were found to 
be of value in the control of the physiological pro-
cess underlying kernel growth and its composition. 
Among the 18 putative genes that regulate KWP (cell 
división/cell growth), the most important are those re-
lated to alpha-expansin 13, CNR1, CNR2, and ZAR1 
on chromosomes 2, 4, and 10, respectively. During 
growth, expansin proteins produced by plants af-
fect cell elongation and a broad range of processes 
that demand cell wall modifications (Sampedro and 
Cosgrove, 2005). We identified the alpha-expansin 
13 gene on chromosome 2 and the beta-expansin 3 
gene on chromosome 5, the latter associated with a 
consistent QTL for KWP. Apparently, gene CNR1 has 
a negative regulation of cell number and organ ex-
pansion, in agreement with negative additive effects 
(or lack of effect) found for KWP in QTL 6. Within the 
interval of QTL 10, the auxin regulated gene ZAR1 is 
a putative orthologous to the ARGOS gene in Arabi-
dopsis, which is related to kernel size as well as to 
enhanced grain yield and drought tolerance (Guo et 
al, 2014). The expression of ZAR1 had a marked in-
teraction with the environment, increasing grain yield 
in a drought temperate conditions and reducing it in 
a humid temperate one. Similarly, the additive effect 
detected in current research for KWP and KGR in QTL 
10 was < 0 in Exp 1 and > 0 in Exp 2 (i.e. QTL×E in-
teraction).

Finally, candidate genes involved in protein and 
carbohydrate metabolisms were numerous and dis-
tributed in almost all detected QTL. Among these 
genes, there are several that regulate protein degra-
dation through the ubiquitin-proteoasome proteolitic 
pathway, as reported by Alvarez Prado et al (2013b); 
i.e., genes encoding the RING-type protein in QTL 3, 
6 and 10 and related with the F-box domain in QTL 
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1, 4 and 6 contribute markedly to grain development 
because this protein affects a broad range of pro-
cesses that include embryogenesis, hormone signal-
ing and senescence (Moon et al, 2004). 

Conclusions
In current research we phenotyped KW together 

with its main physiological determinants (KGR and 
KFD) and kernel compositional traits (starch, protein 
and oil concentrations) in a dent × flint Caribbean 
maize RIL family. The inclusion of a flint inbred in the 
study of KW determination increased the variability of 
the explored mechanisms allowing the quantification 
of a broad genotypic variation as well as an interme-
diate to high heritability. In comparison to previous 
research, the fitted QTL model explained a higher 
proportion of the genetic variance for the evaluated 
traits (>50% for most traits). Detected QTL for KW 
and related traits were grouped in agreement with 
observed phenotypic correlations and with QTL ob-
served in different genetic backgrounds. An impor-
tant finding was the existence of a co-localizing QTL 
for KWP, KGR and KFD on chromosome 5, for which 
there is no previous report. This finding might sug-
gest that a simultaneous effect of KGR and KFD may 
explain an important part of the genotypic variations 
observed in KW, which would help breeders dealing 
with this type of germplasm.
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