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ABSTRACT Epigenetics has become one of the major areas of biological research. However, the degree of
phenotypic variability that is explained by epigenetic processes still remains unclear. From a quantitative
genetics perspective, the estimation of variance components is achieved by means of the information
provided by the resemblance between relatives. In a previous study, this resemblance was described as
a function of the epigenetic variance component and a reset coefficient that indicates the rate of dissipation
of epigenetic marks across generations. Given these assumptions, we propose a Bayesian mixed model
methodology that allows the estimation of epigenetic variance from a genealogical and phenotypic
database. The methodology is based on the development of a T matrix of epigenetic relationships that
depends on the reset coefficient. In addition, we present a simple procedure for the calculation of the
inverse of this matrix (T21) and a Gibbs sampler algorithm that obtains posterior estimates of all the
unknowns in the model. The new procedure was used with two simulated data sets and with a beef cattle
database. In the simulated populations, the results of the analysis provided marginal posterior distributions
that included the population parameters in the regions of highest posterior density. In the case of the beef
cattle dataset, the posterior estimate of transgenerational epigenetic variability was very low and a model
comparison test indicated that a model that did not included it was the most plausible.
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Epigenetics studies variations in gene expression that are not caused by
modifications of the DNA sequence (Eccleston et al. 2007) and is now
considered as one of the most important fields of biological research.
Several biochemical mechanisms that alter gene activity (DNA meth-
ylation, histone modifications, etc.) underpin epigenetic processes
(Jablonka and Raz 2009; Law and Jacobsen 2010). A number of stud-
ies have emphasized the importance of epigenetics in cancer (Esteller

2008) and other human illnesses (Feinberg 2007) as well as in other
mammal (Reik 2007) and plant traits (Henderson and Jacobsen 2007).
Gene activity modifications may occasionally occur in a sperm or an
egg cell and can be transferred to the next generation, denoted as
transgenerational epigenetic inheritance (Youngson and Whitelaw
2008), a phenomenon that has been reported in a wide range of or-
ganisms (Jablonka and Raz 2009). Despite this, the magnitude of the
phenotypic variation that is explained by epigenetic processes still re-
mains unclear (Grossniklaus et al. 2013; Heard and Martienssen 2014).

From the perspective of quantitative genetics, the presence of
transgenerational epigenetic inheritance involves a redefinition of the
covariance between relatives. Tal et al. (2010) developed a model for
the calculation of the covariance between relatives for asexual and
sexual reproduction as a function of epigenetic heritability (g2), the
reset coefficient (v), and its complement, the epigenetic transmission
coefficient (1 2 v). According to these authors, the covariance be-
tween relatives is reduced as the number of opportunities to dissipate
(or reset) the epigenetic marks increase. Therefore, for sexual diploid
organisms, the covariance between parent and offspring is greater

Copyright © 2015 Varona et al.
doi: 10.1534/g3.115.016725
Manuscript received December 1, 2014; accepted for publication January 19, 2015;
published Early Online January 23, 2015.
This is an open-access article distributed under the terms of the Creative
Commons Attribution Unported License (http://creativecommons.org/licenses/
by/3.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Supporting information is available online at http://www.g3journal.org/lookup/
suppl/doi:10.1534/g3.115.016725/-/DC1
1Corresponding author: Unidad de Genética Cuantitativa y Mejora Animal,
Facultad de Veterinaria, Universidad de Zaragoza, c/ Miguel Servet 177, 50013,
Zaragoza, Spain. E-mail: lvarona@unizar.es

Volume 5 | April 2015 | 477

http://orcid.org/0000-0001-6256-5478
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.016725/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.115.016725/-/DC1
mailto:lvarona@unizar.es


than the covariance between full sibs, and the covariance between half
sibs is greater than the covariance between an uncle and its nephew,
despite the fact that the additive numerator relationship between them
is identical (0.5 and 0.25, respectively).

In animal and plant breeding, the standard procedure for
estimating variance components is by means of a linear mixed model
(Henderson 1984) that includes systematic or random environmental
effects, one or more random genetic effects, and a residual. The var-
iance components are estimated by using likelihood-based procedures
(Patterson and Thompson 1971) or Bayesian approaches (Gianola
and Fernando 1986). Under the Bayesian paradigm, the standard pro-
cedure for determining the posterior distribution of the variance com-
ponents uses the Gibbs Sampler algorithm (Gelfand and Smith 1990)
that involves an updated iterative sampling scheme from the full
conditional distributions of all the unknowns in the model.

The aim of this study is to present a Bayesian linear mixed model
that allows one to estimate the heritable epigenetic variability, the reset
coefficient, and the epigenetic transmission coefficient based on
genealogical and phenotypic information. The model is illustrated
with two simulated datasets and with one example that considers
a beef cattle database.

MATERIAL AND METHODS

Statistical model
The standard mixed linear model is described by the following
equation:

y ¼ Xbþ Zuþ e

where y is the vector of phenotypic records, b is the vector of
systematic effects, u is the vector of random additive genetic effects,
and e is the vector of residuals. Then, X and Z are the matrices that
link the systematic and additive genetic effects with the data. The
usual assumption for the prior distribution of u and e are the fol-
lowing multivariate Gaussian distributions (MVN):

u � MVN
�
0;As2

u

�
e � MVN

�
0; Is2

e

�

where s2
u and s2

e are the additive genetic and residual variances,
respectively, and A is the numerator relationship matrix. Further,
the prior distribution of b is commonly assumed to be a uniform
distribution. Conjugate priors for the variance components are the
following inverted chi-square distributions:

s2
u � x21�s2u; nu� s2

e � x21�s2e ; ne�

where s2u and s2e are the prior values of the variances and nu and ne
are their corresponding prior “degrees of belief”.

To estimate transgenerational epigenetic variability, this standard
model can be expanded to:

y ¼ Xbþ Zuþ Zw þ e

where w is the vector of individual epigenetic effects. Note that the
incidence matrix (Z) is the same for u and w and that both genetic
and epigenetic effects are assumed to be independent. The prior
distribution of w is defined as:

w � MVN
�
0;Ts2

w

�

where T is the matrix of epigenetic relationships between individuals
and s2

w is the transgenerational epigenetic variance. As before, the
prior distribution of s2

w is defined as:

s2
w � x21�s2w; nw�

with hyperparameters s2w and nw.
The structure of the T matrix is defined by the recursive relation-

ship between the epigenetic effect of one individual (wi) with respect
to the epigenetic effects of its father (wfi) and mother (wmi):

wi ¼ lwfi þ lwmi þ ei

where

l ¼ 1
2
ð12 vÞ

As defined by Tal et al. (2010), v is the reset coefficient and (12 v) is
the epigenetic transmission coefficient. The reset coefficient repre-
sents the proportion of epigenetic marks across the parental genome
that are expected to be erased, whereas its opposite, the epigenetic
transmission coefficient, indicates the proportion that are transmit-
ted. Furthermore, ei is the residual epigenetic effect of the ith in-
dividual, independent from wi,, and whose distribution is:

ei � N
�
0;
�
12 2l2

�
s2
w

�
if both parents are known;

ei � N
�
0;
�
12 l2

�
s2
w

�
if only one ancestor in known;

assuming that the variance of transgenerational epigenetics effects
(V()) is constant across generations:

VðwiÞ ¼ V
�
wfi

� ¼ VðwmiÞ ¼ s2
w

In matrix notation:

w ¼ Pw þ e (1)

where the P matrix defines a recurrent relationship with the epige-
netic effects of the father and mother. For nonbase individuals, the
ith row of the P matrix contains a parameter l in the column
pertaining to the father and mother of the ith individual. The rest
of elements are null.

Furthermore if:

w ¼ ½I2P�21e

then

VðwÞ ¼ Ts2
w ¼ ½I2P�21VðeÞ½I2P9�21

where VðeÞ is a diagonal matrix with entries equal to s2
w for base

individuals, ð12 l2Þs2
w for individuals with one known ancestor,

and ð12 2l2Þs2
w for individuals whose father and mother are

known. The prior distribution for l will be assumed to be uniform,
between 0 and 0.5.

Parameter estimation through a Gibbs sampler
The Gibbs sampler algorithm is an iterative, updating sampling
scheme that obtains samples from the marginal posterior distributions
of all the unknowns in a model. It requires samples from the full
conditional distributions of all the parameters. In the proposed model,
the set of parameters can be classified into three main groups: i) the
location parameters (b, u, and w); ii) the parameter l associated with
matrix T; iii) the variance components (s2

u, s
2
w, and s2

e ).
The full conditional distributions for these groups are:
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Sampling of the location parameters (b, u, w): The conditional
distributions of the location parameters are univariate Gaussian
(Wang et al. 1994), with parameters drawn from the following mixed
model equations:

Cs ¼ r

where

C ¼

2
64
X9X X9Z X9Z

Z9X Z9Zþ A21a Z9Z

Z9X Z9Z Z9Zþ T21c

3
75 s ¼

2
64
b

u

w

3
75

r ¼

2
64
X9y

Z9y

Z9y

3
75

and a ¼ se
2
=su

2 and c ¼ s2
e
�
s2
w
.

Specifically, the full conditional distribution for the ith location
parameter (si) is:

si � N

0
B@
ri 2

P
i6¼j

cijsj

cii
;
s2
e

cii

1
CA

given the multivariate Gaussian nature of the conditional distribu-
tion of the location parameters.

A key limitation of the procedure is the calculation of the A21 and
T21 matrices. Whereas A21 is calculated by the standard Henderson’s
rules (Henderson 1976) only once, the T21 matrix needs to be calcu-
lated afresh in each cycle as the parameter l is updated. An algorithm
to set-up the T21 matrix is presented in the appendix of this work (see
Appendix).

The full conditional distribution of l: The conditional distribution
of l is developed from the recursive definition of the epigenetic
effects (equation 1). It is a truncated univariate Gaussian distri-
bution (TN) between 0 and 0.5 due to the prior distribution of the
parameter.

pðljwÞ � TN½0;0:5�ðml;slÞ

ml ¼
Pn1
i¼1

ðwfiþwmiÞwi

ðs2
wð12 2l2ÞÞ þ

Pn2
i¼1

wfiwi

ðs2
wð12l2ÞÞ þ

Pn3
i¼1

wmiwi

ðs2
wð12l2ÞÞ

Pn1
i¼1

ðwfiþwmiÞ2
ðs2

wð12 2l2ÞÞ þ
Pn2
i¼1

w2
fi

ðs2
wð12l2ÞÞ þ

Pn3
i¼1

w2
mi

ðs2
wð12l2ÞÞ

sl ¼ 1
Pn2
i¼1

ðwfiþwmiÞ2
ðs2

wð12 2l2ÞÞ þ
Pn2
i¼1

w2
fi

ðs2
wð12 l2ÞÞ þ

Pn3
i¼1

w2
mi

ðs2
wð12 l2ÞÞ

where n1 is the number of individuals with known fathers and
mothers, n2 is the number of individuals with only father known,
and n3 is the number of individuals with only mother known.

The full conditional distributions of the variance components
(s2

u;s
2
w;s

2
e ): The conditional distributions for the variance compo-

nents are the following inverted x2 distributions

s2
u � x22

�
u9A21uþ s2u; nanþ nu

�
s2
w � x22

�
w9T21w þ s2w; nanþ nw

�
s2
e � x22

�
e9eþ s2e ; ndat þ ne

�

where nan is the number of individuals in the population, ndat is the
number of phenotypic data, and s2x and nx are the hyperparameters
for s2

x .

Simulated datasets
To evaluate the procedure, we simulated two different datasets. The first
one had a relative high percentage of variation caused by additive and
transgenerational epigenetic effects (35% and 20%, respectively) and an
intermediate reset coefficient (v = 0.40). In the second dataset, a lower
percentage of variation was explained by additive genetic and trans-
generational epigenetic effects (15% and 10%, respectively) and the reset
coefficient was greater (v = 0.80). Each dataset was composed by
a three-generation population. The base populations included 3000
individuals (1500 sires and 1500 dams) and each of the two subsequent
generations were composed by 3000 full sib families of 10 individuals
each one. The sire and dam for each family were sampled randomly
from the individuals of the previous generation. The genetic and epi-
genetic effects for each individual (ui and wi) in the base population
were generated from the following Gaussian distributions:

ui � Nð0;s2
uÞ

wi � Nð0;s2
wÞ

Furthermore, the genetic and epigenetic effects for the individuals
(uj and wj) of the second and third generation were obtained by
sampling from:

uj � Nð1
2
ufj þ

1
2
umj;

s2
u

2
Þ

wj � Nðlwfj þ lwmj; ð12lÞ2s2
wÞ

where ufi and umj and wfi and wmj were the additive genetic and
transgenerational epigenetic effects of the father and the mother of
the jth individual, respectively. In addition, one phenotypic record
(yi) was generated for every individual by:

yi � Nðmþ ui þ wi;s
2
e Þ

where m was a general mean set to 100 units. The values of the
parameters for the two datasets were:

Dataset 1.

s2
u ¼ 210;  s2

w ¼ 120;  s2
e ¼ 270;  l ¼ 0:30;  h2 ¼ 0:35;  

g2 ¼ 0:20; v ¼ 0:40

being

h2 ¼ s2
u

��
s2
u þ s2

w þ s2
e

�
 and g2 ¼ s2

w

��
s2
u þ s2

w þ s2
e

�

Dataset 2.

s2
u ¼ 90;  s2

w ¼ 60;  s2
e ¼ 450;  l ¼ 0:10;  h2 ¼ 0:15;  

g2 ¼ 0:10; v ¼ 0:80

The Gibbs sampler was implemented using own software written in
Fortran 95. The analysis consisted of a single chain of 1,250,000
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cycles, and the first 250,000 were discarded. Each analysis took 36 hr
using a single thread of an Intel Xeon E5-2650 of 2.00 GHz. The
source code is included as Supporting Information, File S1. Conver-
gence was checked by the visual inspection of the chains and with
the test of Raftery and Lewis (1992). All samples were stored for
calculating summary statistics.

Pirenaica beef cattle data
As an illustrative example, we used a database of phenotypic
records from the yield recording system of the Pirenaica beef cattle
breed. The Pirenaica breed is a meat-type beef population from
northern Spain with an approximate census of 20,000 individuals
that are typically reared under extensive conditions (Sánchez et al.
2002). The data set was made up of 78,209 records for birth weight
with an average value of 41.52 kg and a raw standard deviation of
4.65 kg. In addition, a pedigree file including 125,974 individual-
sire-dam records was used. This information was provided by the
National Pirenaica Breeders Confederation (Confederación Nacional
de Asociaciones de Ganado Pirenaico; http://www.conaspi.net).
Animal Care and Use Committee approval was not required for this
study as field data were obtained from the Yield Recording System of
the Pirenaica breed; furthermore, data were recorded by the stock-
breeders themselves, under standard farm management, with no
additional requirements.

The full model of analysis was:

y ¼ Xbþ Z1uþ Z2mþ Z2pþ Z3hþ Z1w þ e

Where b is the vector of fixed systematic effects that included sex (2
levels) and age of the mother (16 levels), u and m are the vectors of
direct and maternal additive genetic effects with 125,974 elements,
p is the vector of permanent environmental maternal effects (21,143
levels), h is the vector of the random herd-year-season effects
(12,925 levels), w is the vector of transgenerational epigenetic effects
(125,974 levels), and e is the vector of the residuals. Furthermore,
X, Z1, Z2, and Z3 are the incidence matrices that link the different
effects with the phenotypic data. Appropriate uniform bounded dis-
tributions were assumed for the systematic effects and for each
variance component (s2

x ¼ fs2
p;s

2
h;s

2
w;s

2
eg), defined by hyperpara-

meters (nx = 22 and s2x = 0). Furthermore, the prior distribution for
the (co) variance matrix between direct and maternal genetic effects
(G) was the following inverted Wishart:

pðGjnG;G0Þ ¼ IWðnG;G0Þ
where

G ¼
�

s2
u sum

sum s2
m

�

being s2
u and s2

m the direct and maternal genetic variances and sum
the covariance between them. In this case, nG was set to 23 and G0

to a 2 · 2 matrix of zeroes to define a uniform distribution.
Two statistical models (I and II) were fitted. Model I includes

transgenerational epigenetic variance (s2
w), whereas Model II does

not. For each model, the Gibbs sampler was implemented with
a single chain of 3,250,000 cycles, and the first 250,000 were dis-
carded. Convergence was checked by the visual inspection of the
chains and with the test of Raftery and Lewis (1992). The models
were compared based on the pseudo-log-marginal probability of
the data (Gelfand 1996; Varona and Sorensen 2014) by computing
the logarithm of the Conditional Predictive Ordinate (LogCPO)

calculated from the Markov chain Monte Carlo (MCMC) samples.
It was calculated as:

Log CPO ¼
X
i

lnp
_�

yi
��y2 i;Mk

�

where y-i is the vector of data with the ith datum (yi) deleted, Mk is
the kth model and

p
_�

yi
��y2 i;Mk

� ¼ Ns

2
4XNs

j¼1

1

p
�
yi
��u j

k;Mk

	
3
5
21

being Ns is the number of MCMC draws, ujk is the jth draw from the
posterior distribution of the parameters of the kth model.

RESULTS AND DISCUSSION
From the perspective of quantitative genetics, the estimation of
variance components is obtained from the statistical information
provided by the covariance between the phenotypes of relatives
(Falconer and Mckay 1996). Tal et al. (2010) proposed a simple model
for the resemblance between relatives under transgenerational epige-
netic inheritance for asexual and sexual reproduction. This model
assumes that transgenerational epigenetic effects are not correlated
with the additive genetic ones, and that they are distributed under
a Gaussian law. After the central limit theorem, this may be explained
by a large number of epigenetic marks randomly distributed across the
genome. In addition, the distribution pattern of these marks is as-
sumed independent between individuals unless they are relatives. In
that case, some of these marks should have not been erased during the
meiosis drawing them apart from their common ancestor. The pop-
ulation rate of erasure of these marks is measured through the reset
coefficient (v).

In this study, we propose a procedure that makes use of the
aforementioned authors’ definition for sexual diploid organisms to
estimate the parameters under a Bayesian mixed model framework.
Our approach makes it feasible to estimate transgenerational epige-
netic variability from huge datasets of genealogical and phenotypic
data. The key to the procedure is the definition of a T matrix of (co)
variance between transgenerational epigenetic effects. This matrix ex-
clusively depends on a single parameter (l) which is directly related to
the reset coefficient (v) put forward by Tal et al. (2010). As an exam-
ple, for a simple pedigree of seven individuals (Figure 1), the T matrix
is:

Figure 1 Example of a pedigree.
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T ¼

2
666666664

1 0 0 l l l l2

0 1 0 l 0 0 0
0 0 1 0 l l l2

l l 0 1 l2 l2 l3

l 0 l l2 1 2l2 2l3

l 0 l l2 2l2 1 l
l2 0 l2 l3 2l3 l 1

3
777777775

As Tal et al. (2010) stated, if we compare the covariance between full
sibs (individuals 5 and 6) and the covariance between sire-offspring
(individuals 1 and 4), the covariance is greater for the sire offspring
pair, l vs. 2l2, as l is defined as being within the interval (0, 0.5).
Note that if the reset coefficient is 0, then l is 1/2 and the T matrix
becomes equivalent to the numerator relationship matrix (A), where
the covariances between full sibs and sire offspring are equivalent.
Similarly, the uncle2nephew covariance (individuals 5 and 7) is 2l3,
lower than the covariance between half sibs (individuals 4 and 5)
which is only l2.

The mixed model implementation of the covariance between
relatives requires the inverse of the T matrix to construct the mixed
model equations, in a similar manner as the numerator relationship
matrix in the standard model (Henderson 1984). In this study, we
describe a simple procedure for the calculation of this T-1 matrix (see
the Appendix section). The procedure takes into account the recursive
nature of the transgenerational epigenetic effects, using an argument
equivalent to Quass (1976), for the inverse of numerator relationship
matrix (A21), and Quintanilla et al. (1999), for dam-related perma-
nent maternal environmental effects. The main consequence is that
the inverse of the T matrix can be sequentially constructed by reading
the pedigree of the population, in the light of very simple rules. These
rules are close to Henderson’s (1976) rules for constructing the inverse
of the A matrix.

For the example pedigree, the T21 matrix is:

Given this algorithm to set-up the T21 matrix, the implementation of
a Gibbs sampling approach becomes straightforward; it merely
requires sequential iterative sampling from Gaussian (b, u, and w),

truncated Gaussian (l) and inverted x2 distributions (s2
u;s

2
w;s

2
e ). The

only minor complication is that the T21 matrix depends on parameter
l and consequently must be calculated in each Gibbs sampler’s iter-
ation. One possible alternative to avoid this matrix inversion, although
not to avoid its updating in each cycle, is to implement an approach
similar to the one proposed by Rodríguez-Ramilo et al. (2014) for the
genomic relationship matrix. However, setting up the T matrix is
computationally more demanding than the calculation of its inverse
with the algorithm proposed in this study.

The proposed procedure was first checked with simulated data. The
summary of the marginal posterior distributions for the variance
components, additive genetic (h2), and epigenetic (g2) heritability, reset
coefficient (v), and epigenetic transmission coefficient (1 2 v) for both
cases of simulation are presented in Table 1. The greatest posterior density
at 95% for all parameters in the model included the simulated values.
However, some details of the results should be highlighted. In the second
case of simulation, with lower s2

w and l, the posterior standard deviation
(and the HPD95) for the s2

w and s2
e were remarkable wider (66.19 and

67.42, respectively). The cause of this phenomenon is that there is a statis-
tical confounding between the epigenetic and residual variance compo-
nents when the reset coefficient (v) is very high, because the T and I
matrices becomes very similar. To illustrate this fact, in Figure 2 and Figure
3, we present the joint posterior densities of g2 and v for both cases of
simulation. The results of the first case of simulation showed posterior
independence between both parameters, whereas in the second, the mar-
ginal posterior density presented a half-moon shape. This indicates that for
large values of v, g2 (and s2

w) may take any value on its support with
a fairly equal probability. In other words, in the first simulated case the
model showed very good ability to discriminate between both parameters,
whereas in the second it did not. In addition, mixing of the MCMC
procedure in the second case of simulation was clearly worst, and adaptive
MCMC algorithms, such as the proposed by Mathew et al. (2012) may
represent an interesting alternative for its implementation in large data sets.

It must be noted that the sources of information for the estimation
of s2

w and v (or l) comes from the comparison between the covari-
ance between different categories of relatives (see Table 2). Following

T21 ¼

2
66666666666666666666666666666664

1þ 3l2�
12 2l2

� 0 0
2 l�

12 2l2
� 2 l�

12 2l2
� 2 l�

12 2l2
� 0

0 1þ l2�
12 2l2

� 0
2 l�

12 2l2
� 0 0 0

0 0 1þ 2l2�
12 2l2

� 0
2 l�

12 2l2
� 2 l�

12 2l2
� 0

2 l�
12 2l2

� 2 l�
12 2l2

� 0
1�

12 2l2
� 0 0 0

2 l�
12 2l2

� 0
2 l�

12 2l2
� 0

1�
12 2l2

� 0 0

2 l�
12 2l2

� 0
2 l�

12 2l2
� 0 0

1�
12 2l2

�þ l2�
12 l2

� 2 l�
12 l2

�

0 0 0 0 0
2 l�

12 l2
� 1�

12 l2
�

3
77777777777777777777777777777775
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Tal et al. (2010), one estimate of v can be achieved from the
difference between the estimates of covariance between half-sib
and uncle2nephew relationships, a difference that becomes almost
null for low values of l (or high v), as seen in the second case of
simulation (23.10 vs. 22.62). On the contrary, with greater values of
l(or lower v), as in the first case of simulation, this difference is
higher (60.60 vs. 57.36), and, thus, the amount of information
available for estimation purposes increases. This uncertainty in
the estimation of l (or v) is also reflected in the estimation of
s2
w (g2) and s2

e and implies wider posterior marginal densities.
Nevertheless, it is important to emphasize that the joint posterior
mode (v = 0.80, g2 = 0.13) in the second case of simulation was
very close to the simulated parameters (0.80 and 0.10, respectively).

We have also checked our model with a real dataset. In Table 3,
summary statistics of the marginal posterior distributions for the
parameters and LogCPO values are presented for models I and II in
the analysis of birth weight from the Pirenaica beef cattle population.
The posterior mean estimates for heritability ranged between 0.38
(Model I) to 0.41 (Model II), and the posterior mean estimates for

transgenerational epigenetic heritability was only 0.04 (Model I), with
a greatest posterior density at 95% that ranged between 0.00 and 0.11.
These results are coherent with the output of the model comparison
test (LogCPO), which pointed to Model II as the more plausible. If we
focus in this latter model, the estimates of direct and maternal heri-
tability were within the range of estimates in the literature for these
traits (Meyer 1992; Varona et al. 1999; Jamrozik and Miller 2014), and
the absence of the epigenetic transgenerational heritability is coherent
with the fact that most of the epigenetic marks are erased during the
meiosis in mammals (Jablonka and Raz 2009, Schmitz 2014). How-
ever, it should be highlighted that the posterior mean estimate of the
reset coefficient under Model I was surprisingly low (0.20), although
its posterior standard deviation was very high (0.20), and that the
HPD95 region covered almost all the parametric space (0.0120.89).
This wide range reflects the absence of information to properly esti-
mate the parameter, given the low magnitude of s2

w.
It is worth noting that the procedure also can provide epigenetic

breeding values in the fields of animal and plant breeding. These are
calculated by weighting the phenotypic information of relatives

n Table 1 PM, PSD, and HPD95 for simulation cases I and II

Case I Case II

s2
u ¼ 210 s2

w ¼ 120 s2
e ¼ 270 l ¼ 0:30 s2

u ¼ 90 s2
w ¼ 60 s2

e ¼ 450 l ¼ 0:10

Parameter PM PSD HPD95 PM PSD HPD95

s2
u 217.87 18.21 174.662247.49 90.91 4.63 81.42299.25

s2
w 132.92 14.42 106.302164.53 111.99 66.19 37.452288.61

s2
e 251.00 19.71 205.072282.31 396.30 67.42 217.792475.16

h2 0.362 0.029 0.29120.408 0.152 0.007 0.13620.164
g2 0.221 0.024 0.17620.274 0.187 0.110 0.06220.481
l 0.256 0.055 0.14820.365 0.091 0.059 0.02020.233
v 0.488 0.111 0.27020.704 0.818 0.117 0.53420.960
1 2 v 0.512 0.111 0.29620.730 0.182 0.117 0.04020.466

PM, posterior mean estimate; PSD, posterior standard deviation; HPD95, highest posterior density at 95%;s2
u, additive genetic variance, s2

w , transgenerational
epigenetic variance;s2

e, residual variance. Moreover, h2, heritability; g2, transgenerational epigenetic heritability;l, autorecursive parameter, v, the reset coefficient;
1 2 v, epigenetic transmission coefficient.

Figure 2 Joint posterior distribution of the transgenerational epige-
netic heritability (g2) and the reset coefficient (v) in the first case of
simulation.

Figure 3 Joint posterior distribution of the transgenerational epige-
netic heritability (g2) and the reset coefficient (v) in the second case of
simulation.
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according to the magnitude of the elements of the T matrix. In fact,
for epigenetic effects, the weight of distantly related individuals is
lowered as the number of opportunities to reset the epigenetic marks
increases. Both additive genetic and epigenetic effects can be used for
prediction of the future performance of the individual: the expected
genetic response (R) after one cycle of mass selection should be
R ¼ i½h2 þ ð12 vÞg2�s2

p, where i is the intensity of selection and s2
p

is the phenotypic variance. However, further research must be un-
dertaken to develop adequate indices of selection that consider genetic
and epigenetic effects. Although both of them affect the immediate
future performance of the offspring, epigenetic effects are diluted in
future generations as the epigenetic marks are cleaned. It is important
to note that if this selection pressure is relaxed, the average epigenetic
effect declines to zero with a rate of ð12vÞn, where n is the number of
generations without selection.

It should be further noted that the proposed model uses a very
basic definition of transgenerational epigenetic inheritance, as it
assumes equal epigenetic variance for all individuals in the population.
However, when phenotypic records are recorded through the life of
the individual, transgenerational epigenetic variance can be modeled
as age dependent, based on the consideration that the number of
epigenetic marks was accumulated in the genome of the individuals.
Moreover, in the proposed model, it is assumed that the l parameter
(or the reset coefficient) is equal for fathers and mothers, and, in
future research, it seems reasonable to assume a different transmission
coefficient for males and females, allowing for the presence of sex
differential genomic imprinting (Barlow 1997; Reik and Walker

1998). The model can be refined by the inclusion of a hierarchical
Bayesian paradigm that includes systematic effects for any environ-
mental factors that may influence the epigenetic transmission co-
efficient. In addition, a more profound approach could even allow
for the consideration of a genetic determinism of the reset coefficient
with a model similar to that proposed by Varona et al. (2008) for the
degree of asymmetry of a skewed Gaussian distribution.

Finally, and as mentioned by Jablonka and Raz (2009) and Tal
et al. (2010), epigenetics may be viewed as a more wide ranging
concept that could include several types of cultural transmission (Avi-
tal and Jablonka 2000; Richerson and Boyd 2005). The procedure
suggested in this work also could be applied to the analysis of human
or animal datasets that involve any kind of transgenerational trans-
mission, even those not directly related to gene expression.

By way of a conclusion, we can say that this paper presents an
original procedure for the estimation of transgenerational epige-
netic variability based on some generalized assumptions. It is
hoped that the proposal will lead to future research on variations of
epigenetic transmission abilities caused by environmental and/or
genetic factors.
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n Table 2 Expected covariance between relatives in cases of simulation I and II

Case I Case II

Relatives Expected Covariance s2
u ¼ 210 s2

w ¼ 120 l ¼ 0:30 s2
u ¼ 90 s2

w ¼ 60 l ¼ 0:10

Offspring2Progeny 1
2s

2
u þ ls2

w 132 51

Full-Sibs 1
2s

2
u þ 2l2s2

w 121.2 46.2

Half-Sibs 1
4s

2
u þ l2s2

w 60.6 23.1

Uncle2Nephew 1
4s

2
u þ 2l3s2

w 57.36 22.62

s2
u, additive genetic variance;s2

w , transgenerational epigenetic variance;l, autorecursive parameter.

n Table 3 PM, PSD, and HPD95 for models I and II

Model I Model II

PM PSD HPD95 PM PSD HPD95

s2
u 9.033 0.914 7.059, 10.449 9.897 0.408 9.123, 10.727

s2
m 3.574 0.212 3.168, 3.998 3.554 0.217 3.135, 3.981

sum 24.473 0.253 24.979, 23.990 24.508 0.259 25.032, 24.013
s2
p 0.747 0.081 0.590, 0.906 0.765 0.079 0.611, 0.922

s2
w 0.876 0.820 0.000, 2.701 2 2 2

s2
h 2.634 0.069 2.501, 2.771 2.633 0.069 2.499, 2.770

s2
e 7.055 0.223 6.606, 7.478 7.156 0.209 6.735, 7.556

l 0.398 0.103 0.056, 0.494 2 2 2
v 0.204 0.207 0.012, 0.888 2 2 2
1 2 v 0.796 0.207 0.112, 0.988 2 2 2
h2 0.377 0.035 0.299, 0.427 0.412 0.012 0.389, 0.436
m2 0.149 0.007 0.135, 0.164 0.148 0.007 0.133, 0.162
g2 0.036 0.034 0.000, 0.113 2 2 2
LogCPO 2287542.3 2287475.1

PM, posterior mean estimate; PSD, posterior standard deviation; HPD95, highest posterior density at 95%;s2
u, additive genetic variance, s2

m, maternal environmental
variance, sum, covariance between them, s2

p , permanent maternal environmental variance, s2
h, herd-year-season variance, s2

w , transgenerational epigenetic variance,
and s2

e, residual variance. Moreover, h2, heritability, m2, maternal heritability, g2, transgenerational epigenetic heritability, l, autorecursive parameter, v, reset
coefficient, and 1 2 v, epigenetic transmission coefficient. LogCPO, logarithm of the conditional predictive ordinate.

Volume 5 April 2015 | Epigenetic Variance Component Estimation | 483



LITERATURE CITED
Avital, E., and E. Jablonka, 2000 Animal Traditions: Behavioural Inheri-

tance in Evolution. Cambridge University Press, Cambridge.
Barlow, D. P., 1997 Competition—a common motif for the imprinting

mechanism? EMBO J. 16: 6899–6905.
Eccleston, A., N. DeWitt, C. Gunter, B. Marte, and D. Nath, 2007 Introduction

epigenetics. Nature 447: 395–400.
Esteller, M., 2008 Epigenetics of cancer. N. Engl. J. Med. 358: 1148–1159.
Falconer, D. S., and T. F. C. Mckay, 1996 Introduction to Quantitative

Genetics. Ed. 4. Longmans Green, Harlow, Essex.
Feinberg, A. P., 2007 Phenotypic plasticity and the epigenetics of human

disease. Nature 447: 433–440.
Gelfand, A. E., 1996 Model determination using sampling-based methods,

pp. 145–161 in Markov Chain Monte Carlo in Practice, edited by W. R.
Gilks, S. Richardson, and D. J. Spiegelhalter. Chapman & Hall, London.

Gelfand, A. E., and A. F. M. Smith, 1990 Sampling-based approaches to
calculating marginal densities. J. Am. Stat. Assoc. 85: 398–409.

Gianola, D., and R. L. Fernando, 1986 Bayesian methods in animal
breeding theory. J. Anim. Sci. 63: 217–244.

Grossniklaus, U., W. G. Kelly, A. C. Ferguson-Smith, M. Pembrey, and
S. Lindquist, 2013 Transgenerational epigenetic inheritance: how impor-
tant is it? Nat. Rev. Genet. 14: 228–235.

Heard, E., and R. A. Martienssen, 2014 Transgenerational epigenetic in-
heritance: myths and mechanisms. Cell 157: 95–109.

Henderson, C. R., 1976 A simple method for computing the inverse of
a numerator relationship matrix used in the prediction of breeding values.
Biometrics 32: 69–83.

Henderson, C. R., 1984 Application of Linear Models in Animal Breeding.
University of Guelph, Guelph, ON.

Henderson, I. R., and S. E. Jacobsen, 2007 Epigenetic inheritance in plants.
Nature 447: 418–424.

Jablonka, E., and G. Raz, 2009 Transgenerational epigenetic inheritance:
prevalence, mechanisms and implications for the study of heredity and
evolution. Q. Rev. Biol. 84: 131–176.

Jamrozik, J., and S. P. Miller, 2014 Genetic evaluation of calving ease in
Canadian Simmentals using birth weight and gestation length as corre-
lated traits. Livest. Sci. 162: 42–49.

Law, J. A., and S. E. Jacobsen, 2010 Establishing, maintaining and modifying DNA
methylation patterns in plants and animals. Nat. Rev. Genet. 11: 204–220.

Mathew, B., A. M. Bauer, P. Koistinen, T. C. Reetz, J. Léon et al., 2012 Bayesian
adaptive Markov chain Monte Carlo estimation of genetic parameters.
Heredity 109: 235–234.

Meyer, K., 1992 Variance components due to direct and maternal effects
for growth traits of Australian beef cattle. Livest. Prod. Sci. 11: 143–177.

Patterson, H. D., and R. Thompson, 1971 Recovery of inter-block infor-
mation when block sizes are unequal. Biometrika 58: 545–554.

Quass, R. L., 1976 Computing the diagonal elements of the inverse of
a large numerator relationship matrix. Biometrics 32: 949–953.

Quintanilla, R., L. Varona, M. R. Pujol, and J. Piedrafita, 1999 Maternal
animal model with correlation between maternal environmental effects of
related dams. J. Anim. Sci. 77: 2904–2917.

Raftery, A. E., and S. M. Lewis, 1992 How many iterations in the Gibbs
sampler, pp. 763–774 in Bayesian Statistics IV, edited by J. M. Bernardo,
J. O. Berger, A. P. Dawid, and A. F. M. Smith. Oxford University Press,
New York.

Reik, W., 2007 Stability and flexibility of epigenetic gene regulation in
mammalian development. Nature 447: 425–432.

Reik, W., and J. Walker, 1998 Imprinting mechanisms in mammals. Curr.
Opin. Genet. Dev. 8: 154–164.

Richerson, P. J., and R. Boyd, 2005 Not by Genes Alone: How Culture
Transformed Human Evolution. University of Chicago Press, Chicago.

Rodríguez-Ramilo, S. T., L. A. García-Cortés, and O. González-Recio,
2014 Combining genomic and genealogical information in a reproduc-
ing kernel Hilbert spaces regression model for genome-enabled predic-
tions in dairy cattle. PLoS One 9: e93424.

Sánchez, A., J. Ambrona, and L. Sánchez, 2002 Razas Ganaderas Españolas
Bovinas. MAPA-FEAGAS. Spain, Madrid.

Schmitz, R. J., 2014 The secret garden—epigenetic alleles underlies complex
traits. Science 343: 1082–1083.

Tal, O., E. Kisdi, and E. Jablonka, 2010 Epigenetic contribution to covari-
ance between relatives. Genetics 184: 1037–1050.

Varona, L., and D. Sorensen, 2014 Joint analysis of binomial and contin-
uous traits with recursive model: a case study using mortality and litter
size in pigs. Genetics 196: 643–651.

Varona, L., I. Misztal, and J. K. Bertrand, 1999 Threshold-linear versus
linear-linear analysis of birth weight and calving ease using an animal
model: I. Variance component estimation. J. Anim. Sci. 77: 1994–
2002.

Varona, L., N. Ibañez-Escriche, R. Quintanilla, J. L. Noguera, and J. Casellas,
2008 Bayesian analysis of quantitative traits using skewed distributions.
Genet. Res. 90: 179–190.

Wang, C. S., J. J. Rutledge, and D. Gianola, 1994 Bayesian analysis of mixed
linear models via Gibbs sampling with an application to litter size in
Iberian pigs. Genet. Sel. Evol. 26: 91–115.

Youngson, N. A., and E. Whitelaw, 2008 Transgenerational epigenetic ef-
fects. Annu. Rev. Genomics Hum. Genet. 9: 233–257.

Communicating editor: D. J. de Koning

484 | L. Varona et al.



APPENDIX

Derivation of the T21 matrix
The vector of epigenetic effects (w) can be represented as:

w ¼ Pw þ e

where the P matrix defines a recurrent relationship with the epigenetic effects of the father and mother. For nonbase individuals, the ith row
of the P matrix contains a parameter l in the column pertaining to the father and mother of the ith individual. The rest of the elements are
null.

Furthermore, if:

w ¼ ½I2P�21e

then

VðwÞ ¼ ½I2P�21VðeÞ
h
I2P9

i21

given that VðwÞ ¼ Ts2
w

½VðwÞ�21 ¼ T21 1
s2
w
¼ ½I2P9�½VðeÞ�21½I2P� (A1)

From e ¼ ½I2P�w, it is possible to define a QT matrix as:

QT ¼ VðeÞ 1
s2
w
¼ ½I2P�T½I2P�9 (A2)

If we consider the structure of ½I2P� and ½I2P9�, the QT matrix has a diagonal structure with 1s for base individuals and 12 l2 and 12 2l2

for those with one or two known parents, respectively.
Finally, replacing (A2) into (A1):

T21 ¼
h
I2P9

i
Q2 1
T ½I2P�

Taking advantage of this structure, it is possible to define the following algorithm for constructing T21 by reading the pedigree information
and calculating for each individual (i) in the pedigree:

h If the father and mother are unknown;

add 1 to the diagonal (i,i)

h If only one parent (p) is known;

add 1
ð12 l2Þ to the diagonal (i,i)

add 2 l
ð12 l2Þ to the elements (i,p), (p,i)

add l2

ð12 l2Þ to the element (p,p)

h If both ancestors (p and m) are known;

add 1
ð12 2l2Þ to the diagonal (i,i)

add 2l
ð12 2l2Þ to the elements (i,p), (i,m), (m,i), (p,i)

add l2

ð12 2l2Þ to the elements (p,p), (p,m), (m,p), (m,m)
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