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Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically
stimulated. Applying a suitable stress and/or strain with or without a cycle to the sca�olds and cells during the culturing process
resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used sca�olds in vascular tissue
engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. 
e mechanical
modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for
developing a suitable model for collagen gels are of primary importance for the �eld. In this research, we focused on mechanical
properties of collagen gels under uncon�ned compression. First, mechanical viscoelastic models are discussed and framed in the
control system theory. Second,models are �tted using system identi�cation. Severalmodels are evaluated and two nonlinearmodels
are proposed:Mooney-Rivlin inspired andHammersteinmodels.
e results suggest thatMooney-Rivlin andHammersteinmodels
succeed in describing the mechanical behavior of collagen gels for cyclic tests on sca�olds (with best �tting parameters 58.3% and
75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

1. Introduction

In vascular tissue engineering (VTE), bioreactors are used to
subdue cells in culture on sca�olds with quasi-physiological
conditions during the maturation process that is expected
to induce extracellular matrix reorganization and to provide
mechanical properties to the regenerated tissue thus leading
to the development of functional tissue [1, 2]. Strains can eas-
ily be generated and measured in bioreactors but stresses can
only be estimated, and this is not a trivial task. Commercial
bioreactors can generate and noninvasively measure pressure
and diameter of constructs but measurements of stresses can
only be estimated by models. One of the most promising
approaches for the estimation of the stresses constitutes
in generating a mechanical model [3]. Mechanical models
are needed not only to identify the degree to which the

regenerated tissue will match the physiological tissue [4], but
also to provide an estimation of the generated internal stress
and its role in growth and development of the constructs
[1]. Sca�olds made of synthetic or natural biodegradable
materials are generally used, and there is a considerable
interest in tailoring mechanical properties of sca�olds to
facilitate the cell growth [5]. Among the natural sca�olds,
collagen gels have received special attention mainly because
they present unmatched biological performances, such as
its nontoxicity, low immunogenicity, and antigenicity [6]. In
addition to its biological relevance, the collagen is the most
abundant protein in native tissues and can be isolated easily
in large quantities. Speci�cally, the main functional feature of
collagen is load bearing of tensile force in most tissues where
mechanical function is essential such as blood vessels, skin,
cartilage, and bones [7, 8]. 
e development of models of
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the mechanical behaviour of collagen will also facilitate the
optimization of themechanical properties of the construct by
modifying the conditions generated in the bioreactor [4].

Stress and strain present a nonlinear behaviour in most
of the biological and bioarti�cial tissues [9–11]. In particular,
viscoelasticity has an important role in these materials,
mainly because the entire history of the straining determines
the material properties. In addition, there is a dependence of
the loading rate in the mechanical response. In the search of
mathematical relations between force and displacement Fung
proposed the quasilinear viscoelasticmodel [11]. Nekouzadeh
et al. [12] and Nekouzadeh and Genin [4] described the
two main limitations of this approach: the accuracy and the
computational cost in calibration experiments. 
erefore the
selection of the nonlinear viscoelastic model and the �tting
procedure for a speci�c tissue can also be a computational
challenge.

Although the mechanical model of other sca�olds used
in VTE (e.g., standard polyglycolic acid gels) is rather well
known [2, 13], for collagen gels, the model describing the
mechanical behaviour has much less been studied. Shear
and uniaxial extension experiments have been studied by
Meghezi et al. [10], using relaxation tests, thus proposing a
viscoelastic model, represented by a spring (elastic modulus)
and Maxwell elements, associated in parallel. A generaliza-
tion of Fung’s model based on incremental uniaxial tests
(step and ramp) where both the spring moduli and time
constants vary with strain was also proposed by Pryse et
al. [14]. Chandran and Barocas have proposed a review of
the mechanical properties of collagen gels [9]. 
e main
conclusion was that the collagen network is actively involved
in shear and tensile tests. On the contrary, for compression
the mechanisms are not well established yet. Achilli and
Mantovani [5] measured the mechanical properties (Young
modulus) under con�ned-compression in a study aimed to
gel characterization a�er preconditioning and assuming a
linear model. Chandran and Barocas [9] observed that under
step-con�ned compression (10%), collagen gels exhibited a
collapse while, under ramp-compression (0.1%/second), no
collapse was observed. 
ey concluded that the gel behaves
primarily as a viscoelastic solid, with important damping but
negligible relaxation on the time scale of their experiments
(1800–2400 seconds).


is work focuses on the mechanical constitutive equa-
tions of collagen gels in cyclic compression (loading and
unloading). We assumed that the mechanical properties of
collagen gels should be evaluated under cyclic testing in
order to better mimic the cyclic solicitations imposed by
the bioreactor to the vascular construct [15]. Mechanical
models are written in the form of a dynamic system to
frame the work within the systems control theory [16]. In
control engineering, the �eld of system identi�cation (SI)
is devoted to building mathematical models of dynamical
systems from measured data [17]. Using SI, we implemented
a simple and fast way of achieving constitutive equations
describing the behaviour of collagen gels under uncon�ned
compression tests. Results were then interpreted by linear
viscoelasticmodels [11], theMoolin-Rivlin approach [18], and
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Figure 1: Compression test setup. 
e te�on plates have a diameter
of 70mm and are attached to a 10N load cell mounted on an Instron
Microtester.

a new polynomial model is �nally proposed to describe the
mechanical behaviour of collagen gels.

2. Material and Methods

2.1. Sample Preparation. 
e protocol used to prepare the
gels was previously described in [19]. Brie�y, type I collagen
is extracted from rat-tail tendons and solubilized in acetic
acid solution (0.02N) at 4 g/L. A collagen solution (2 g/L)
is mixed with Dulbecco’s modi�ed Eagle medium (DMEM,
Gibco, Invitrogen Corporation, Burlington, ON, Canada,
1.1X), NaOH (15mM), and HEPES (20mM) in deionized
water. 
is mixture is poured into moulds and le� to jellify
overnight at 4∘C.

2.2. Mechanical Tests. Disk-shaped samples were tested in
uncon�ned compression mode. 
e 70mm diameter Te�on
compression plate is attached to a 10N load cell mounted
on an Instron Microtester (Instron 5848 Microtester, Instron
Corporation, Norwood, MA, USA) as shown in Figure 1.

e uncon�ned compression was performed with a uniform
ramp speed ranging from 0.1 to 1mm/min.
e average strain
was 20%. Eight cycles (15 to 25% strain) were performed
followed by a relaxation test. For this �nal test, the strain
rate is increased to 10mm/min with a �nal strain value of
50%. Relaxation tests with �nal strains of 25% and 50% were
also performed with strain rate of 10mm/min. All tests were
performed at 37∘C.

2.3. Mechanical Models. In this section we will focus on
the two proposed mechanical models. Basically, they consist
in two Maxwell bodies [11] with nonlinear springs. Two
nonlinear springs relationships will be tested: Mooney-Rivlin
and polynomial (models 1 and 2, resp.).
e general approach
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is quasi-static, and acceleration e�ects are neglected. Conse-
quently, the inertia parameter is neglected in the evaluated
models.

2.3.1. Model 1. 
e �rst model is inspired in the Mooney-
Rivlin model, which is applied to uniaxial compression of
incompressible and isotropic gels. It leads to a stress-stretch
relation written as

� = (�1 + �2 1�) ⋅ (�2 −
1
�) , (1)

where � is the Eulerian stress and � = �/�0 is the stretch ratio
(� is the extension and �0 is the extension at instant 0). �1
and �2 are constants. Equation (1) yields a linear relationship

between �−1 and � ⋅ (�2 − 1/�)−1. Note also that this becomes
the Neo Hookean model when �2 = 0 [18].


e two Maxwell bodies proposed (with the modi�ed
Mooney-Rivlin model) have the next equations:

	1 ̇�1 = �1 (�� − �1) ,
	2 ̇�2 = �2 (�� − �2) ,

(2)

where �� and �� − �� are the extension of the dashpot and the
spring �, respectively. 
e extension �� is de�ned as

�� = (�1 + �2 1�) ⋅ (�2 −
1
�) . (3)

�� is the spring constant and 	� the viscosity. Finally, the load
is written as follows:

��0 = [�1 (�� − �1) + �2 (�� − �2)] 1� , (4)

where � = �(�0/�) and �0 is the cross-section area of the
sample. It should be remarked that the extension �� varies
with time but does not depend on the derivatives of �. By
de�nition, it is a static function of � thus belonging to a

memoryless system. 
e stretch � = (1 − �)−1 is also a static
function of �.
2.3.2.Model 2. A linear representation of twoMaxwell bodies
is

�̈ + �1 + �2�1�2 �̇ + �
�1�2 = (�1 + �2) ̈� + (�1�1 +

�2�2 ) ̇�, (5)

where � = (� − �0)/� is the strain, and �� = 	�/�� is the
relaxation time due to Maxwell body “�”. Instead of using �,
we propose here to use a nonlinear function of the strain, in
particular, an order three polynomial function of the strain:

� (�) = �0�3 + �1�2 + �2�. (6)

2.4. Nonlinear System Modeling. In this section we will
consider the above described viscoelasticmodels as nonlinear
dynamical systems in state space representation. From now
on we will denominate �, �, and �� as input, output, and state
space variable, respectively. All the mentioned variables vary
with time.

u(t) y(t)H(s)

f(·)

f(u(t))

Nonlinear
static system Linear dynamic system

Figure 2: Nonlinear Hammerstein model. 
e model is de�ned
with a static nonlinear block (the output does not depend on the
derivative of the input) followed by a linear time invariant dynamic
system.

2.4.1. Model 1. Replacing in (2)–(4) the state space represen-
tation variables (�1 = �1 and �2 = �2) and taking � = � and� = ��0, a nonlinear system is now de�ned as

�̇1 = �1	1 (�
� − �1) ,

�̇2 = �2	2 (�
� − �2) ,

� = [�1 (�� − �1) + �2 (�� − �2)] �0� ,
(7)

where �� expressed in function of the input of the system is

�� = (�1 + �2 �0� ) ⋅ [(
�
�0)
2 − �0� ] . (8)

2.4.2. Model 2. On the other hand, for implementing the
polynomial model we de�ne � = � and � = ��0, and (5)
is modi�ed to

̈� + !1 ̇� + !2� = "0�̈ + "1�̇, (9)

where !1 = (�1 + �2)/�1�2, !2 = 1/�1�2, "0 = �1 + �2, and"1 = �1/�2 + �2/�1. 
e state space representation variables
are now de�ned as �1 = � − "0� and �2 = �̇1 − ("1 − !1"0)�,
and a state space system is obtained (see [16]):

ẋ = [ 0 1
−!2 −!1] x + [

"1 − !1"0
−!1 ("1 − !1"0) − !2"0] �,

� = [1 0] x + "0�,
(10)

where �1 and �2 are the elements of the row vector x.
is is a
linear system but if instead of using � we use �� = �(�) =�(�), a block-oriented Hammerstein nonlinear system is
obtained (see Figure 2).

Equations (7) and (10) (using �� as input) constitute the
nonlinear systems to be tested in the following sections.

2.5. System Identi�cation. 
e �tting procedure of (7) and
(10) to real data is a computational challenge. SI is a well
established area of control system theory devoted to �nd
mathematical models from measurements [17, 20, 21]. 
e
basic idea of these techniques is as follows. Let us assume
that an input signal �(%) is applied to a dynamical system
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for a determined time interval %1 < % < %�. 
e corre-
sponding output signal is obtained, �(%). Suppose that both
signals are sampled at %� instants, then data can be denoted

by {�(%�); �(%�)}��=1. A general form (or structure) for the
mathematical model is assumed and then the parameters are
determined fromexperimental data.O�en, a variety ofmodel
structures are evaluated, and the most successful ones are
retained.
e data are used to build the model by minimizing
the di�erence between the output of the estimatedmodel and
the measured output �(%�). 
is minimization can be based
on statistical techniques which ensure the robustness of the
method. An important step in a SI process is the validation of
the model, which must be performed with an independent
data set. In this work, we will use one sample gel data set
for identi�cation of the model and the remaining samples for
validation purposes. One of the validation parameter is

FIT = 100 ⋅ (1 − ''''�model − �meas

''''''''�meas −mean (�meas)'''') , (11)

where �model and �meas are the output given by the estimated
model and the measured data, respectively. It is important to
remark that the validation is not a new �tting: the measured
input is applied to the identi�edmodel and then the obtained
output is compared to the measured one.
e �nal prediction
error (FPE) is also de�ned in Appendices as another param-
eter for evaluation of the model. 
is parameter is computed
with the identi�cation data.

Several tools were developed to implement the SI algo-
rithms. In this paper two Matlab toolboxes are used: System
Identi�cation and CON-tinuous-Time System IDenti�cation
(CONTSID toolbox [22]).

Particularly in this work, linear and nonlinear SI are
tested. For the former, srivc algorithm is applied [20] using
the structure given by (10) and the strain as input (� = �). For
the nonlinear SI we implement grey-box SI using (7) (model
1) and (10) (model 2, using (6) as input �� = �(�)). Levenberg-
Marquardt algorithm was used to minimize the prediction
error of the models.

3. Results

3.1. Relaxation. Figure 3 shows the relaxation tests per-
formed at two strain steps, 25% (one sample) and 50% (three
samples). Continuous time linear system identi�cation, par-
ticularly, srivc algorithmwas used to obtain transfer functions
of the form of (A.1). 
e input of the system is the step of the
strain (� = � = (�−�0)/�) and the output is the load (� = ��0).

e best model outputs are also plotted in Figure 3. Curve
almost overlaps for the 25% test and the errors (equal to|�model−�meas|which are represented in the inset �gure) were
always lower than 0.01 for the 50% tests. 
e dynamics of
such identi�ed model and the physical Maxwell bodies time
constants (��) are related. In fact, the poles of the transfer
functions are the inverse of the time constants of theMaxwell
bodies. 
e values obtained for 25% of strain are �1 ≈ 11 and�2 ≈ 180 seconds and for 50%, �1 ≈ 20 and �2 ≈ 112 seconds.

e results presented here give rise to the proposal of the two
Maxwell bodies model for this study.
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Figure 3: Relaxation tests. (a) Load relaxation in continuous black
line corresponds to strain step of 25%. Red, green, and blue
continuous lines are the measured relaxations using a step strain
of 50%. Both strains are also applied to the estimated models and
the values are plotted in dashed-dotted lines with the same color
code. (b) shows the time evolution of the absolute error between the
experimental curves and models �tting curves in logarithmic scale.

Table 1: Experimental conditions of the cyclic tests.

Speed Strain Purpose

Sample 1 1.0mm/min 20% Identi�cation

Sample 2 0.5mm/min 20% Validation

Sample 3 0.5mm/min 20% Validation

Sample 4 0.1mm/min 20% Validation

3.2. Cycling. Table 1 shows the experimental conditions of
the cyclic tests for the four samples. As indicated by (1) in

Section 2.3.1, a plot of �−1 versus � ⋅ (�2 − 1/�)−1 helps in
determining whether Mooney-Rivlin model �ts some region
of the stress-strain behavior. Such a plot in Figure 4 suggests
that the �rst compression (plotted in dashed-dotted black
line) can be represented by a Neo Hookean model (which
is plotted in dashed blue line). 
e compression phases of
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Figure 4: Mechanical behavior of cycling compression test of
sample 1.Measured data are plotted in dashed-dotted black line (�rst
compression) and red continuous line. Limit cases are plotted in
dashed blue line (Neo Hookean nonviscous model using �2 = 0,
constant value) and in dotted blue line (Mooney-Rivlin nonviscous
model). 
e arrows indicate the time evolution.

the subsequent cycles (plotted in red line) are well described
by Mooney-Rivlin model (plotted in dotted blue line). 
e
hysteresis loop appears because of the cyclic test and is an
evidence of a viscous response of collagen gels.
ese �ndings
give rise to the proposal of theMooney-Rivlin inspiredmodel
described by (7).

Identi�cation and validation data are presented in
Figure 5. In order to excite all the dynamical modes, the
fastest strain data are used for identi�cation which corre-
spond to sample 1.


e best linear model identi�ed is presented in Figure 6.

e model structure is given by (A.1). � = � (strain) is used
as input and � = ��0 as output. 
e continuous time srivc
algorithm is used. 
e parameters obtained are �1 ≈ 1 s and�2 ≈ 20 s.

Figure 7 shows the results for the Mooney-Rivlin model.
Algorithms time constants were the ones identi�ed in the
linear cases (�1 ≈ 1 s and �2 ≈ 20 s). For model 1, the shape of
the wave is followed almost superimposed and the estimated
parameters are �1 = −5.61, �2 = 4.4, �1 = 0.63, and�2 = 5.21.

If the constant �2 is now �xed to 0, the model 1 is now
similar to a Neo Hookean model. Figure 8 shows the results
when the identi�cation of the model is performed with such
a model structure. 
e �rst compression of sample 1 is well
reproduced by the model 1 (with �2 = 0). 
is is not the case
of the validation data Figures 8(b) and 8(c). 
e estimated
parameters are �1 = 0.22, �1 = 5.94, and �2 = 31.58.


e results for the Hammerstein model are presented in
Figure 9.
e parameters obtained were �� = 10.8, −1.1 and 0
for � = 0, 1, and 2, respectively, and also �1 = 0.81, �2 = 0.13,�1 = 4 s, and �2 = 70 s.
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Figure 5: Identi�cation data (sample 1) and validation data (samples
2, 3, and 4). (a) and (b) correspond to engineering strain (�eng =(� − �0)/�0) and load (��0) of sample 1, respectively. (c) correspond
to��0 of sample 2 (red) and 3 (black). In (d) is shown sample 4.
e
dashed-dotted lines indicate the �rst compression of each sample
(Neo Hookean behavior).


e FIT parameters obtained for the best models are
presented inTable 2 for the validation data.
eHammerstein
model yields the highest FIT parameter: 75.8%. It occurred
for sample 3. For sample 4, Hammerstein model also yields a
high FIT parameter. Finally, the FPE parameters (computed
with identi�cation data at cycling part only) for the linear
model, model 1 (Mooney-Rivlin inspired model), and model
2 (Hammerstein with polynomial function of the strain) are2.89 × 10−4, 1.53 × 10−4, and 3.13 × 10−4, respectively.
4. Discussions


is study explored several aspects of the nonlinear relation
between uniaxial extension and load for collagen based gels.
Compression relaxation and cyclic tests were realised in
order to study themechanical behavior. System identi�cation
techniques for processing data were proposed.

Relaxation compression tests indicate that two Maxwell
bodies can represent the collagen gel presented here. Regard-
ing the cyclic response of the material, linear Maxwell
behavior can not correctly explain the measurements. To
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Table 2: FIT parameters of the identi�ed model obtained with the validation data (samples 2, 3, and 4).
emethods and algorithms are also
detailed. 
e validation data are referenced to the corresponding �gure. M-R, L, and NL mean Mooney-Rivlin, linear and nonlinear.

FIT [%] � �/�0 System Structure Figure

Sample 2

57.5 � � L Equation (A.1) Figure 6(b)

37.8 � � NL M-R Figure 7(b)

46.9 � � NL Hammerstein Figure 9(b)

Sample 3

65.5 � � L Equation (A.1) Figure 6(b)

58.3 � � NL M-R Figure 7(b)

75.8 � � NL Hammerstein Figure 9(b)

Sample 4

11.3 � � L Equation (A.1) Figure 6(c)

21.3 � � NL M-R Figure 7(c)

58.2 � � NL Hammerstein Figure 9(c)

0

0.1

�
A

0
(N

)

−0.1

−0.2

Time (s)

0 50 100 150 200 250 300

(a)

0

0.1

�
A

0
(N

)

−0.1

−0.2

Time (s)

0 100 200 300 400 500 600

(b)

Time (s)

0 500 1000 1500 2000 2500

0

0.1

�
A

0
(N

)

−0.1

−0.2

(c)

Figure 6: Linear system identi�cation. (a) Identi�cation data using
(A.1) and srivc algorithm. Measured and estimated data are shown
in dashed-dotted and continuous red line, respectively. Validation
data of sample 2 (red) and sample 3 (black) are shown in (b), with
the same lines code. (c) shows the validation data of sample 4.

interpret it, the analysis of the cyclic tests is divided in two
parts: (i) �rst excursion of the cyclic test (�rst compression)
and (ii) the rest of the cycling.

Figure 8 shows the results of the �rst excursion (i).
According to the identi�cation data, the Neo Hookean
inspired model (model 1 using �2 = 0) seems to represent
very well the measurements (Figure 8(a)), but this must be
carefully interpreted. It should be noted that the �tting of
validation data for the �rst excursion is not good (Figures
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Figure 7: Grey box nonlinear system identi�cation using Mooney-
Rivlin inspired model (model 1 with structure given by (7)). (a)
Identi�cation data. Measured and estimated data are shown in
dashed-dotted and continuous red line, respectively. Validation data
of sample 2 (red) and sample 3 (black) are shown in (b), with the
same lines code. (c) shows the validation data of sample 4.

8(b) and 8(c)). Strictly, it can not be concluded that this is
the mechanical model of the gels.

For the rest of the cycling data (ii), the linear model
(Figure 6) do not represent qualitatively the measurements.
However the FIT parameters are surprisingly high. 
e
Mooney-Rivlin inspiredmodel (model 1) has a relatively good
FIT parameter, 58.3% for sample 3 (Table 2). If we observe
only the second part of the cycling (from 200 to 600 seconds),
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Figure 8: Grey box nonlinear system identi�cation using Neo Hookean inspired model (model 1 with structure given by (7) and �2 = 0). (a)
Identi�cation data. Measured and estimated data are shown in dashed-dotted and continuous red line, respectively. Validation data of sample
2 (red) and sample 3 (black) are shown in (b), with the same lines code. (c) shows the validation data of sample 4.
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Figure 9: Block-orientedHammersteinmodel system identi�cation
using a polynomial static function of order three. 
e structure is
given by (10) using �� = �(�) = �(�) as input. (a) shows the
identi�cation data. (b) and (c) show validation data of samples 2,
3, and 4 using the colors and lines code of Figures 6–8.

the �tting is still better (curves almost overlap for samples
2 and 3, see Figure 7(b)). 
is is not the case of the sample
4; see Figure 7(c). With the best Hammerstein model from
200 to 600 seconds the �tting is even better (see Figure 9(b)).

eHammersteinmodel achieved the best �tting when it was
applied to sample 4: 58.2% (Figure 9(c)). Although Mooney-
Rivlin models have very good �tting parameters for this
part of the compression test, Hammerstein structure, both
quantitatively and qualitatively, yields a better description
of the wave form. Considering the FPE parameter the best
result is obtained with the Mooney-Rivlin inspired model.

is indicates that according to the Akaike criterion the best
result is obtained with the model 1.

A commentary should be added regarding the mechan-
ical parameters (	� and ��) obtained with the presented
technique. Although modi�ed two Maxwell bodies model
is the proposed model, we cannot strictly say that 	� is
the viscosity and �� is the modulus (note that for model 1
the extension �� depends on �1 and �2). However, we can
compute 	1 ≈ �2�1�1/�0, as samples have �0 ≈ 700mm2;
then it yields the value 3.4 kPa s. Using the same reasoning
for 	2 ≈ 570 kPa s. Both values are comparable with the one
obtained in [10].

Arteries are complex hierarchical systems, in which three
types of cells (endothelial, smooth muscular, and �broblasts)
cohabit in perfect symphony in a sort of basal membrane
composed by several types of proteins and biochemical
factors all devoted to providing adequate support and speci�c
signals for regulating the overall biological activity and, as
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a consequence, the mechanical properties [23]. When bio-
engineers target the regeneration of an artery, by de�nition,
they focused on an engineering approach thus aiming at
reproducing a pseudoartery. Cells are o�en the missed com-
ponents, although their importance is crucial for their ability
to regenerate tissue, organize proteins, and secrete their own
extracellular matrix. In this context, computational model
can be very e�ective in providing bioengineers the important
factors to consider during experimental approaches.

5. Conclusions


e viscoelastic nature of collagen gels under dynamic
solicitation is encountered in bioreactors or in mechanobi-
ology experiments. 
is behavior is particularly hard to
anticipate. 
e tools and models commented on here frame
the discussion in terms of system identi�cation methods.

is approach introduces engineering concepts, such as the
design of experiments and optimal experimental design, to
increase the amount of information that can be retrieved
from experiments. In future work we plan to study living cells
within the collagen gelmatrix and tomonitor evolution of the
mechanical properties using the models presented here.

Appendices

A. Transfer Function Model

Equation (9) can be transformed into a linear system repre-
sentation called transfer function. It is obtained by taking the
Laplace transform as follows:

: (>)
? (>) =

(�1 + �2) >2 + (�1/�1 + �2/�2) >>2 + ((�1 + �2) /�1�2) > + 1/�1�2 =
"0>2 + "1>>2 + !1> + !2 ,

(A.1)

where now > = @A is the Laplace frequency and:(>) and?(>)
are the Laplace transform of �(%) = �(%)�0 and �(%) = �(%),
respectively. From (A.1) it can be seen that the dynamic of
this system is dominated by the two poles (�1/	1 and �2/	2)
which are the inverse of �1 and �2.
B. Validation Parameter

In order to evaluate the estimatedmodels, FIT parameter was
calculated. Another parameter is also computed, the Akaike
�nal prediction error (FPE) de�ned as

FPE = B(1 + C/D1 − C/D) , (B.1)

where C is the number of estimated parameters andD is the
number of estimation (identi�cation) data andB is called loss
function:

B = 1
D
�∑
�=1

[�model(%�) − �meas(%�)]2 . (B.2)


e computation is made with the identi�cation data.
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