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Land use effects on microbial communities may have profound impacts on agricultural productivity and
ecosystem sustainability as they are critical in soil quality and health. The main aim of this study was
to characterize the microbial communities of pristine and agricultural soils in the central Yungas region
in Northwest Argentina. As a first step in the development of biological indicators of soil quality in this
region, a comprehensive approach involving a structural and functional evaluation of microbial commu-
nities was used to detect changes in soil as consequence of land use. The sites selected included two

531 ‘ggsrds" pristine montane forest sites (MF1 and MF2), two plots under sugarcane monoculture for 40 and 100
Soil quality years (SC40 and SC100), one plot under 20 years of soybean monoculture (SB20), a recently deforested
Land use and soybean cropped site (RC), and two reference sites of native forest adjacent to the sugarcane and
DGGE soybean plots (PF1 and PF2). We used three microbial community profiling methods: denaturing gradi-
CLPP ent gel electrophoresis (DGGE) analysis of PCR amplified 16S rRNA genes, community-level physiological
PLFA profiling (CLPP) using a BD oxygen biosensor system (BDOBS-CLPP) and phospholipid fatty acid (PLFA)

analysis. Deforestation and agriculture caused expected increases in pH and decreases in organic car-
bon and microbial biomass. Additionally, shifts in the microbial community structure and physiology
were detected with disturbance, including reduced diversity based on PLFA data. The higher respiratory
response to several carbon substrates observed in agricultural soils suggested the presence of microbial
communities with lower growth yield efficiency that could further reduce carbon storage in these soils.
Using an integrated multivariate analysis of all data measured in this study we propose a minimum
data set of variables (organic carbon, pH, sucrose and valeric acid utilizations, a17:0 and a15:0 PLFA
biomarkers and the value of impact on microbial diversity) to be used for future studies of soil quality in

Northwest Argentina.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction Thus, one of the foundations for sustainable agriculture should be

to preserve this diversity (Brussaard et al., 2007). However, certain

The activity of soil microbial communities determines the pro-
ductivity and overall quality of terrestrial ecosystems due to soil
microorganisms’ role in nutrient cycling, pollutant transforma-
tion/detoxification processes and soil aggregate stability, among
other functions. It is known that the presence of a diverse microbial
community contributes to stress resistance and resilience in soils.
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agricultural practices alter physical, chemical and biological soil
characteristics which can lead to the degradation of the microbial
habitat and reduce soil quality (Joergensen and Emmerling, 2006).

Tropical and subtropical agroecosystems are particularly sus-
ceptible to soil degradation and associated nutrient losses because
of the higher mineralization of organic matter related to inputs.
Considerable changes in land use have occurred in the subtropi-
cal region of Northwest Argentina over the last decades, including
an increased rate of deforestation (Grau et al., 2005; Izquierdo and
Grau, 2009). This region includes the Yungas, the southern limit of
the Andean subtropical rainforests of South America, which consti-
tutes a large biodiversity reservoir. However, significant portions
of the pedemontane forest of the Yungas have been converted
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to agriculture (Brown and Malizia, 2004). Fertile soils and warm
temperatures facilitated the introduction of a number of crops,
including sugarcane, citrus, tobacco, common bean and, more
recently, soybean. To date, the long-term effects of these changes in
land use on soil microbial communities and concomitant impacts
on agricultural sustainability are unknown.

The assessment of changes in the quality of these soils due to
altered management or conversion of natural areas into agricul-
tural production requires a definition of soil quality. While there
is no clear consensus (Bastida et al., 2008), an adequate definition
of soil quality for the purpose of analyzing changes in land use as
those observed in the Yungas is that introduced by Karlen et al.
(1997): “the capacity of a specific kind of soil to function, within
natural or managed ecosystem boundaries, to sustain plant and
animal productivities, maintain or enhance water and air qualities,
and support human health and habitation”. However, the quality
of agricultural soils should consider not only plant productivity,
but also soil microbial community composition and activity since
the functional stability and health of the soil depend on the micro-
bial activities. Indeed, a recent study has found that a shift from
an undisturbed forest to long-term cultivation was associated with
the establishment of a less functionally stable microbial community
(Chaer et al., 2009).

Maintaining soil quality is a complex issue involving the inter-
action of climatic, soil, plant and human factors. This complexity
explains the growing interest in the identification of sensitive indi-
cators for soil quality monitoring programs. Changes in land use
that can lead to soil deterioration are usually tracked with tra-
ditional physicochemical indicators. However, biological variables
usually show variations before the physicochemical characteristics.
Because the composition and dynamics of the soil microbial com-
munities are also altered during the soil deterioration process, they
have been more recently used to evaluate management induced-
soil changes (Acosta-Martinez et al., 2008; Chaer et al., 2009).

The main aim of this study was to characterize the microbial
communities of pristine and agricultural soils in the central Yungas
region using a multivariate approach. Traditional physicochemical
analyses were combined with three microbial community pro-
filing methods; denaturing gradient gel electrophoresis (DGGE),
community-level physiological profiling with a BD oxygen biosen-
sor system (BDOBS-CLPP) and phospholipid fatty acid (PLFA)
analysis. DGGE is a molecular fingerprinting method that sepa-
rates PCR amplification products in a chemical gradient across
a polyacrylamide gel. The application of DGGE to the separation
of 16S rRNA genes is a useful tool to analyze the genetic struc-
ture of soil microbial communities (Muyzer et al., 1993; Heuer
et al,, 1997). The BDOBS-CLPP approach detects both endogenous
and substrate-induced respiration of soil microbial communities
without the strong selective enrichment and associated bias of pre-
vious CLPP methods (Vdisdnen et al., 2005; Brown et al., 2009;
Garland et al., 2010). PLFA analysis provides a profile of the micro-
bial community using microbial groups’ biomarkers based on cell

Table 1
Sampling sites, codes, and land uses of the analyzed soils.

membrane phospholipids (Zelles, 1999). We also analyzed which
parameters are better suited for detecting changes in soil microbial
communities related to deforestation and agricultural land use and
their potential as biological indicators of soil quality in subtropical
regions.

2. Materials and methods
2.1. Sample collection sites

Table 1 shows a description of the soils analyzed. Samples were
collected in March 2007 from pristine (montane and pedemontane
forest soils) and agricultural soils under two different crops such as
sugarcane (Saccharum spp.) and soybean (Glycine max [L.] Merrill).
Pedemontane forest soils adjacent to sugarcane or soybean plots
were sampled as a baseline.

Five composite samples were taken per site, 20m apart from
each other. Each composite sample consisted of 16 soil cores
(10cm depth, 5cm diameter) collected from the surface horizon
after removing the organic litter. Samples from agricultural soils
were obtained from the inter-row zone. Each sample was well
homogenized and divided in two parts; one was sent to a com-
mercial laboratory (Laboratory of Soil and Water, INTA Salta) to be
processed for chemical and physical analyses using standard proce-
dures (Sparks etal., 1996), whereas the other field-moist was sieved
through a 2 mm mesh for microbial analyses. Sub-samples were
stored at —80°C for molecular (DGGE) and biochemical (PLFA pro-
files) analyses or at room temperature for physiological profiling
analysis.

2.2. DNA isolation, PCR amplification of 16S rDNA and DGGE
analysis

Total microbial community DNA was extracted from 0.25 g soil
samples with the Power Soil DNA isolation kit (Mo Bio Laborato-
ries, Inc.,, CA, USA) according to manufacturer’s instructions. The
isolated DNA was quantified in a spectrophotometer at 260 nm
(GeneQuant DNA/RNA calculator, Pharmacia Biotech). The V6-V8
region of 16S rRNA gene was PCR amplified using the GC-F984 and
R1378 primer set (Heuer et al., 1997). The PCR mixture consisted of
30ng of soil DNA, 0.25 mM of each primer, 1.5 mM MgCl,, 0.2 mM
of each dNTP, 5% DMSO, and 2.5 U of Platinum Taq DNA polymerase
(Invitrogen), and the buffer (1x) provided with the enzyme. Ampli-
fication was carried out in an MJ] Research PTC-100 thermocycler
with the following temperature program: 5 min at 95°C, 35 cycles
consisting of 1min at 94°C, 1min at 55°C, and 2min at 72°C,
and finally 30 min at 72°C. PCR products were checked by 1%
(w/v) agarose gel electrophoresis in Tris-Borate-EDTA buffer
and ethidium bromide staining. DGGE analysis of 16S rRNA gene
products was carried out as described by Correa et al. (2009) with
a denaturing gradient of 40-60%. The gels were run 1600V/h in
Tris—Acetate-EDTA buffer at 60°C, stained for 30 min with SYBR

Soil codes Land uses Locations (Argentina) Coordinates Altitude (ma.s.l.)
Pristine soils

MF1 Pristine montane forest Calilegua National Park, Calilegua, Jujuy 23°41.160'S, 64°52.533'W 1388
MF2 Pristine montane forest Calilegua National Park, Calilegua, Jujuy 23°41.990'S, 64°52.025'W 1178
PF1 Pristine pedemontane forest adjacent to SC40 plot Libertador General San Martin, Jujuy 23°54.065'S, 64°49.852'W 493
PF2 Pristine pedemontane forest adjacent to RC plot Las Lajitas, Salta 24°54.032'S, 64°20.225'W 577
Agricultural soils

SC40 Sugarcane monoculture for 40 years Libertador General San Martin, Jujuy 23°53.765'S, 64°49.658'W 470
SC100 Sugarcane monoculture for 100 years Libertador General San Martin, Jujuy 23°50.056'S, 64°46.760'W 370
RC Recently cleared and soybean cropped Las Lajitas, Salta 24°54.040'S, 64°20.189'W 578
SB20 Soybean monoculture for 20 years Las Lajitas, Salta 24°53.105'S, 64°12.375'W 458
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Green I nucleic acid stain (molecular probes) and photographed
under 254 nm UV light with a EDAS120 (Kodak). As recommended
for DGGE fingerprinting analysis, comparative analysis of nor-
malized DGGE profiles was performed with GelCompar II v. 3.0
(Applied Maths, Belgium) using Pearson’s product-moment cor-
relation coefficient (r) to calculate pairwise similarity coefficients
among pattern densitometric profiles and similarity matrices were
clustered using the unweighted pair group method with averages
(UPGMA) algorithm (Rademaker et al., 1999).

2.3. Physiological profiling using the BD™ oxygen biosensor
system (BDOBS)

Profiles of sole carbon source utilization by soil microbial
communities were performed using the BDOBS (BD Biosciences,
Bedford, MA, USA). This system utilizes a 96-well plate with a
ruthenium dye that fluoresces as dissolved oxygen is depleted
in the overlying microbial inoculum, yielding a measurement
of O, use and, concomitantly, substrate utilization (Vdisdnen
et al, 2005). The carbon sources selected for the experiment
were L-lysine, L-arginine, L-asparagine, D-mannose, sucrose, valeric
acid, p-galacturonic acid, p-glutaric acid, p-coumaric acid, p-
quinic acid and vanillic acid (4-hydroxy-3-methoxybenzoic acid)
(Sigma-Aldrich Inc.). Stock solutions (0.3 gL~1) were prepared in
deionized water, filter-sterilized (Millipore, <0.22 wm) and stored
at 4 °C. Eighty microlitres of each carbon source stock solution was
separately added to individual microplate wells, and 80 L of ster-
ile deionized water was added to control wells to monitor the
response to background of soil carbon. Five grams of each soil sam-
ple were suspended in 12.5 mL of filter-sterilized deionized water
in 50 mL polypropylene tubes. Sterile glass beads were added to
the soil slurries and tubes were vigorously shaken by hand for
1 min. Soil suspensions (160 wL) were loaded into the wells, and
microplates were immediately transferred to the plate reader (Wal-
lac 1420 Victor2 multi-label counter, Perkin Elmer Life Sciences).
Plates were incubated at 30 °C without shaking. Fluorescence read-
ings were obtained from the bottom of the plate every 30 min for
up to 48 h using a 485 nm excitation filter and a 590 nm emission
filter.

Fluorescence response data obtained from BDOBS were con-
verted to normalized relative fluorescence units (NRFU) by dividing
the readings at each time point by the baseline value. The response
at 1h was used as the baseline to ensure that temperature had
equilibrated in the plates given the temperature sensitivity of the
ruthenium dye. The maximum respiratory response in soils with
the background of soil carbon and that induced by the eleven car-
bon sources, expressed as NRFU, was used to classify the studied
soils on the basis of the microbial community physiological pro-
files. The time to minimum threshold response, or TMR, defined as
the time required for the NRFU to increase by 10% (i.e., 1.1) also was
calculated for each test (Garland et al., 2003).

2.4. Phospholipid fatty acid (PLFA) analysis

Microbial lipids were extracted from 1.0 g of sieved root-free
freeze-dried soil. One sample, which was chosen at random, was
analyzed for each soil. We used a modified Bligh and Dyer (1959)
extraction procedure (White et al.,, 1979; Guckert et al., 1985)
where a single phase solvent system (chloroform) was modified
to include a phosphate buffer. This technique initially extracts
lipids from only viable microorganisms captured at the time of
sampling. Lipid extracts were then fractionated on silicic acid
columns into neutral, glyco- and polar lipids. Only polar lipids
were collected and then methylated with 0.2 M methanolic KOH
to form fatty acid methyl esters (FAMEs). Purified FAMEs were
then brought to volume with hexane containing an internal FAME

standard (Cy9.9). Chromatographic peaks were quantified by using
this internal FAME standard on a Varian 3800 GC-FID. FAME iden-
tification of each peak was based on retention time data with
known standards. Additional confirmation of FAME peak iden-
tities by double bond and mid-chain branching positions was
obtained by GC-mass spectrometry (GC-MS) at Microbial Insights,
Inc.

The polyenoic unsaturated fatty acids 18:2w6 and 18:1w9c were
considered fungal biomarkers (Bardgett et al., 1996; Baath, 2003).
Branched, saturated Gram positive fatty acids of i15:0, a15:0, i16:0,
i17:0 and a17:0, the monoenoic and cyclopropane unsaturated
Gram negative fatty acids of cy17:0, 18:1w7c and cy19:0, the gen-
eral bacterial markers 15:0, 16:1w7c and 16:1w7t and also, the
actinobacterial 10Me16:0 were considered part of the total bac-
terial make-up (Ekelund et al., 2003; Leckie et al., 2004).

2.5. Statistical analysis

Differences between physicochemical parameters from pristine
(MF1, MF2, PF1 and PF2) and agricultural soils (SC40, SC100, RC and
SB20) were tested with multiple analysis of variance (MANOVA).
Since the global difference between land uses was statistically sig-
nificant, each variable was tested with an individual analysis of
variance (ANOVA). An initial pattern-searching analysis using prin-
cipal component analysis (PCA) was performed on the PLFA and
CLPP data. For the PLFA analysis, the $nmol g~ of soil dry weight
for each fatty acid was considered to compensate for differences in
absolute amounts among soil samples. These exploratory analyses
were followed by MANOVA and ANOVA to contrast pristine and
agricultural soils. The time to minimum response (TMR) data were
analyzed by one-way ANOVA (P=0.05).

To analyze the DGGE fingerprinting data we used the procedure
described by Aboim et al. (2008), where a value called “impact on
microbial diversity” (IMD) is determined. IMD is a measure of how
much the microbial community structure deviated from the orig-
inal reference situations (pristine pedemontane forest soils) and
is calculated as the normalized Pearson distance values between a
given agricultural soil (SC40, SC100, RC or SB20) and each reference
pristine soil (PF1 or PF2).

Soil parameters and microbial community function and struc-
ture data from agricultural and reference pristine soils were
included in a single PCA to assess the interactions between them
and to choose variables that better discriminate between agricul-
tural and reference pristine soils. The detailed selection process
was as follows: original variables that were highly correlated with
PC1 factor alone and variables highly correlated with PC1 and PC2
factors were selected in the first step. Secondly, if two or more vari-
ables passed the first criteria, but they showed correlation among
them, only one variable of the group was considered. Then, ifa given
variable did not correlate with any other of its same type (physic-
ochemical or microbiological), it was incorporated in the final set.
The centroid value of each variable was used in the biplot for a
better visualization of the results.

All statistical analyses were performed using R statistical soft-
ware (R Development Core Team, 2004).

3. Results

3.1. Physical and chemical soil parameters

Selected physical and chemical parameters of the loam soils
analyzed are shown in Table 2. Pristine soils (MF1, MF2, PF1 and
PF2) differed (P=0.01) from the agricultural soils (SC40, SC100, RC
and SB20) due to higher WHC and lower pH, OC and total nitrogen
content.
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Table 2

The main physicochemical properties of soils under different land uses in the central Yungas region of Northwest Argentina.

179

Soil parameters? Pristine soils

Mean values Agricultural soils

Mean values

Montane forest Pedemontane forest® Sugarcane Soybean

MF1 MF2 PF1 PF2 SC40 SC100 RC SB20
Sand (%) 56.2 40.2 48.5 313 44.25 a 42.6 373 48.5 46.5 4494 a
Silt (%) 30.0 36.5 38.0 53.4 39.63a 36.6 35.0 315 42.0 36.38a
Clay (%) 13.8 232 13.7 13.8 16.19a 21.0 27.5 134 13.2 18.63a
Textural class Sandy loam Loam Loam Silty loam Loam Loam Sandy Loam Loam
WHC (%) 46.2 54.5 35.0 41.0 41.56 a 32.0 31.7 37.4 30.4 28.06 b
pH 5.7 5.9 7.1 6.0 6.17b 7.8 7.4 6.4 6.9 7.06 a
EC (mmhoscm~') 0.5 0.9 0.8 0.5 0.67 a 0.6 0.4 1.2 0.5 0.68 a
0OC (%) 2.6 3.5 1.8 2.8 2.65a 1.0 1.0 2.6 1.2 1.51b
Total N (%) 0.25 0.3 0.18 0.15 024a 0.10 0.10 0.22 0.13 0.13b
C:N 11.0 11.0 10.0 12.4 11.0a 11.8 10.8 115 8.2 10.88 a
P (ppm) 4.7 7.2 35.8 5.6 2431a 79 63.4 11.6 22.5 1244 a
K (mequiv.100g™1) 0.5 1.0 0.8 1.0 0.86 a 0.3 0.5 1.0 1.4 0.84a

Data are means of five replicates. Variables with different letters shown statistically significant differences (P=0.01) between agricultural and pristine soils. See Table 1 for

soil codes.
2 WHC, water holding capacity; EC, electrical conductivity; OC, organic carbon.
b Reference soils.

3.2. DGGE analysis

The relative genetic structure of the soil bacterial communi-
ties was analyzed by PCR amplification of 16S rRNA genes and
its subsequent sequence specific separation by DGGE. Five analyt-
ical replicates were initially analyzed for each sampling site, but
given the similarity in profiles among replicates, only triplicates
are shown to ease visualization of the data. 16S rDNA PCR-DGGE
analysis produced distinguishable and complex banding patterns
for each sampling site reflecting the composition of the bacterial
community in these soil samples (Fig. 1). Cluster analysis of DGGE
profiles indicated that the structure of dominant bacterial commu-
nities was different among the soils analyzed and these differences
depended on land use and geographical origin of the soil samples.
Based on a similarity level of 70%, 7 clusters were defined. MF1 and
MF2 soils were clearly separated from all other soils and were less
than 32% similar to each other. PF2 soil clustered separately (with
the exception of one replicate) from RC and SB20 soils, indicating
that the bacterial communities of the recently deforested soil (RC)
were more similar to those exposed to 20 years of soybean mono-
culture (SB20) than those of its adjacent pristine pedemontane
forest soil (PF2). SC100, SC40 and PF1 soils formed three related but
separate clusters. Soil bacterial communities from sugarcane fields
with land use histories of 40 or 100 years monoculture (SC40 and
SC100) were more similar to each other (shared at least 65% sim-
ilarity) than those from the adjacent pristine pedemontane forest
soil (PF1).

3.3. Community-level physiological profiling

Functional profiling was based on maximum respiratory
response (i.e., peak in fluorescence corresponding to the minimum
dissolved oxygen within the ruthenium dye gel layer in the BDOBS
for each of the 11 added substrates as well as with the background
of soil carbon). PCA of the multivariate profile of peak responses
revealed a clear separation between pristine montane forest (MF1
and MF2) and agricultural soils (SC40, SC100, RC and SB20) along
the PC1 axis, with intermediate values for pristine pedemontane
forest soils adjacent to agricultural soils (PF1 and PF2) (Fig. 2). The
SC40 and SC100 soils formed a cluster well separated from the other
soils along PC2. The two montane forest soils (MF1 and MF2) did
not have distinct physiological profiles.

The maximum respiratory activity (NRFU) of microbial commu-
nity differed (P<0.0001) between the agricultural and pristine soils.
Several carbon sources (arginine, lysine, coumaric acid, quinic acid

and valeric acid) showed significantly higher peak values in agri-
cultural soils, while only sucrose was more utilized in pristine soils
(Table 3). The responses observed with the other carbon sources
and the background of soil carbon were not significant. We also
observed high differences (P<0.0001) in the time to the minimum
response (TMR) between agricultural and pristine soils (Fig. 3).
With the background of soil carbon, agricultural soils showed
greater TMR (3.3 h) than pristine soils (1.9 h). Carbon source addi-
tion affected TMR depending on land use and the carbon source
tested. In agricultural soils, a reduction in TMR was observed

Similarity (rx100)

o o o
=3 © @

L 100

SC100-b
SC100-c
SC100-a
SC40-b
SC40-c
SC40-a
PF1-a
PF1-b
PF1-c
MF1-a
MF1-b
MF1-c
MF2-a
MF2-c
MF2-b
PF2-b
PF2-c
PF2-a
RC-b
RC-c
SB20-a
SB20-c
SB20-b
RC-a

VI

Fig. 1. Cluster analysis (Pearson/UPGMA) of 16S rDNA-DGGE fingerprints of soil
bacterial communities. Lower case letters after soil codes indicate sample replicate.
See Table 1 for soil codes.
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Table 3

Maximum respiratory activity of the soil microbial communities expressed as normalized relative fluorescence units (NRFU).

Land uses Carbon sources?

bc asp arg lys man suc van cou qui gal glu val
Pristine soils
MF1 2.39 4,58 3.16 5.74 4,51 4.44 5.99 7.17 3.04 4.07 7.66 5.03
MF2 2.62 4.48 4.18 6.12 4.85 3.83 5.67 6.91 3.58 4.79 6.93 6.99
PF1 1.40 5.76 7.69 7.43 5.40 4.26 7.74 8.64 5.14 2.55 8.87 8.25
PF2 3.54 6.45 7.90 7.95 6.19 4,71 7.62 8.47 4,34 6.66 7.80 7.50
Mean values 249a 532a 5.73b 6.81b 524a 431a 6.76 a 7.80b 4.03 b 4.52a 7.82a 6.94b
Agricultural soils
SC40 1.63 5.92 9.61 9.35 4.20 2.23 3.51 6.70 7.53 3.72 6.76 8.44
SC100 1.61 5.46 9.76 9.21 3.61 1.84 5.96 9.55 6.81 3.97 5.59 9.44
RC 2.67 6.66 9.03 8.33 6.71 4.84 8.90 9.53 7.78 5.76 8.80 7.36
SB20 1.91 6.22 9.37 9.49 6.24 3.56 8.25 9.56 6.66 4.66 8.09 8.56
Mean values 196a 6.06 a 9.44a 9.09 a 5.19a 3.12b 6.65 a 8.83a 7.20a 453 a 731a 8.45a

Data are means of five replicates. Different letters indicate significant differences (P=0.0001) between agricultural and pristine soils. For soil sample codes see Table 1.
2 bc, background of soil carbon; asp, asparagine; arg, arginine; lys, lysine; man, mannose; suc, sucrose; van, vanillic acid; cou, coumaric acid; qui, quinic acid; gal,

galacturonic; glu, glutaric acid; val, valeric acid.

N
£
0
~ © 4
o
N
O
o
o~ SC40
SC100
o -
T T T T T T
3 2 1 0 1 2

PC1 (34.4%)

Fig. 2. Principal component analysis (PCA) of the maximum respiratory response
of soil microbial communities expressed as normalized relative fluorescent units
(NRFU). Data represent the average obtained from five replicates of each soil. Bars
are the standard deviations along both axes. See Table 1 for soil codes.

—— Pristine soils

== = Agricultural soils

Time to Minimun Response (h)
N
1

0 T— T T T T T 1 1 T T 1
bc asp arg lys man suc van cou qui gal glu val

Fig. 3. The time to minimum response (TMR) of soils in the BDOBS-CLPP assay with
the background of soil carbon or the addition of the different carbon sources. Data
represent the mean of four replicates for each land use and the error bars are the
square root of the mean square error for each carbon source’s ANOVA. See Table 1 for
soil codes. bc, background of soil carbon; asp, asparagine; arg, arginine; lys, lysine;
man, mannose; suc, sucrose; van, vanillic acid; cou, coumaric acid; qui, quinic acid;
gal, galacturonic; glu, glutaric acid; val, valeric acid.

with several carbon sources (asparagine, arginine, lysine, mannose,
sucrose and vanillic acid, coumaric acid, quinic acid and valeric acid)
(Fig. 3). By contrast, no effect on TMR was observed in pristine soils
with any of the carbon sources tested.

3.4. Phospholipid fatty acid (PLFA) analysis

The PCA of PLFA data (nmol%) for 12 FAMEs explained 47.8%
and 24.4% of the variance in PC1 and PC2, respectively (Fig. 4). Soil
microbial communities from pristine soils (MF1, MF2, PF1 and PF2)
showed the highest values for PC1, and were clearly separated from
the agricultural soils (SC40, SC100, RC and SB20) along this axis.
This separation was based on higher relative abundance of a15:0,
16:1w7c,16:1w7t,a17:0 and cy17:0 biomarkers in pristine soils (to
the right) and the i15:0 biomarker in agricultural soils (to the left).

ANOVA comparing pristine (MF1, MF2, PF1 and PF2) and agri-
cultural (SC40, SC100, RC and SB20) soils showed that several
individual fatty acids varied significantly in their relative abun-
dance between these two land uses (Table 4). Soil microbial
communities of agricultural soils showed significantly lower abun-
dance of bacterial fatty acids (i15:0, i16:0, i17:0, 18:1w7c and
cy19:0), actinobacterial fatty acid (10Me16:0) and the fungal fatty
acid (18:1w9c). Microbial biomass, based on total PLFA concentra-

- =
1o Jcy19:0
sB20 18:109c y
°
«~ 4
SC100
;\3 °
< AU NE e PF2
< © MF1 o
g 15:0, 7o g0 S @
X - a i
S 16:107c  MF2
16:107t
o -~ 7 a1%):0
o
18:1w7c
-
SC40
°
T T T T T T
3 2 1 0 1 2

PC1 (47.8%)

Fig. 4. Principal component analysis (PCA) of phospholipid fatty acid profiles
(%nmol g~ of dry soil) of the analyzed soils. See Table 1 for soil codes.
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Table 4

Structure and biomass of microbial communities in pristine and agricultural soils by PLFA analysis.

Soils? PLFA (nmol g~! dry soil) F:Bratio Total biomass
(nmol g~ dry soil)
Bacterial PLFA Fungal PLFA
i15:0 al5:0 i16:0 16:1w7c 16:1w7t 10Mel6:0 i17:0 al7:0 «cy17:0 cy19:0 18:1w7c 18:1w9c
Pristine 79a 4.1 29a 39 31 54a 23a 1.1 64a 7.8a 43a 0.11a 51.24a
Agricultural 22b nd® 04b nd. n.d. 0.8b 0.5b n.d. 1.0b 1.1b 1.0b 0.20 a 7.12b

Data are means of four independent soil samples. Different letters indicate significant differences (P<0.05) between pristine and agricultural soils.

2 Pristine soils: MF1, MF1, PF1 and PF2; agricultural soils: SC40, SC100, RC and SB20.

b n.d,, not detected.

tion was much higher in pristine soils (51.24 nmolg~! of soil dry
weight) than in agricultural soils (7.12 nmol g~ of soil dry weight).
Despite this important difference in microbial biomass, the fungal
to bacterial PLFA ratio (F:B) did not vary between the pristine and
agricultural soils.

3.5. Integrated multivariate analysis

The PCA of the integrated data set (including physicochemi-
cal parameters and microbial community function and structure
data) clearly separated agricultural soils from their pristine ref-
erence soils, with the first 2 PCs capturing a significant portion
(66%) of the total variance (Fig. 5). Along the PC1 axis, SC40-SC100
was separated from PF1, and SB20 differentiated from PF2, with RC
occupying an intermediate position. SB20-RC was distinct from PF2
along the PC2 axis. This PCA allowed us to select a set of variables
most influential in the discrimination between the agricultural soils
and the pristine soils used as reference in each case (PF1 for SC40
and SC100 and PF2 for RCand SB20). This selection was based on the
correlations among the measured variables showed graphically in
Fig. 5 and the correlations of the variables to each axis (Table 5). The
final set of variables to be considered for future studies of soil qual-
ity monitoring in this region was composed of pH, soil OC content,
sucrose and valeric acid utilization, a15:0 and a17:0 fatty acids’
abundances and IMD value. OC content, sucrose utilization, a17:0
and a15:0 PLFA biomarkers tend to have higher values in reference
pristine soils (PF1 and PF2), while soil pH, the utilization of valeric
acid and IMD value were higher in agricultural soils.

<
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Fig. 5. Integrated multivariate analysis (PCA) of the 37 physicochemical and micro-
biological variables of the agricultural and the pristine reference soils. IMD, impact
on microbial diversity; MB, microbial biomass; bc, background of soil carbon; asp,
asparagine; arg, arginine; lys, lysine; man, mannose; suc, sucrose; van, vanillic acid;
cou, coumaric acid; qui, quinic acid; gal, galacturonic; glu, glutaric acid; val, valeric
acid; WHC, water holding capacity; EC, electrical conductivity; OC, organic carbon.
See Table 1 for soil codes.

Table 5
Correlations of original variables to ordination axes derived from PCA of analyzed
soils.

Variable? ™
PC1 PC2

IMD -0.67 -0.59
bc 0.75 0.11
asp 0.74 —0.38
arg -0.79 -0.41
lys -0.79 -0.35
man 0.83 —-0.47
suc 0.97 -0.18
van 0.74 -0.53
cou 0.25 —0.61
qui -0.53 -0.61
gal 0.58 -0.11
glu 0.76 -0.35
val -0.88 0.06
i15:0 -0.69 -0.30
al5:0 0.91 0.06
i16:0 0.91 -0.06
16:1w7c 0.55 0.55
16:107t 0.64 0.63
10Me16:0 0.09 0.20
i17:0 0.74 -0.34
al7:0 0.65 0.64
cy17:0 0.59 0.55
18:1w9c 0.05 -0.73
18:1w7c -0.57 0.51
cy19:0 0.23 -0.63
MB 0.73 —0.01
Sand -0.04 -0.68
Silt 0.43 0.48
Clay -0.78 0.30
WHC 0.89 0.35
pH -0.91 0.10
EC 0.51 -0.41
ocC 0.96 0.06
Total N 0.76 -0.46
C:N 0.27 0.6
P -0.49 0.01
K 0.57 -0.59

2 IMD, impact on microbial diversity; bc, background of soil carbon; asp,
asparagine; arg, arginine; lys, lysine; man, mannose; suc, sucrose; van, vanillic
acid; cou, coumaric acid; qui, quinic acid; gal, galacturonic; glu, glutaric acid; val,
valeric acid; MB, microbial biomass; WHC, water holding capacity; EC, electrical
conductivity; OC, organic carbon.

b Positive correlation indicates greater value in soils with higher coordinate scores
for the axis, negative correlation indicates greater value in soils with lower coordi-
nate scores for the axis (see Fig. 5).

4. Discussion

Our results indicated that deforestation for crop production
modified the structure and function of the soil microbial commu-
nities in the studied region, as well as some soil physicochemical
parameters. Microbial community profiling methods detected dif-
ferences in the genetic structure and function of soil microbial
communities between the agricultural soils and their adjacent pris-
tine soils, and also between soils under sugarcane or soybean
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monocultures. Furthermore, these methods allowed us to detect
both historical and recent changes in land uses.

DGGE fingerprinting revealed complex banding patterns reflect-
ing the complex bacterial community structure expected for
sub-tropical soils. Although for each site a distinct cluster was
observed, and also structural shifts were evident between agri-
cultural and reference soils, we could not discern the presence
or absence of dominant bands in particular positions related to
changes in land use. Additionally, these soils produced very com-
plex fingerprints and thus, it was not possible to accurately estimate
the total number of bands. It is known that DGGE fingerprints
describe only the predominant members in a community (repre-
senting at least ~1% of the total target pool) so it does not reflect the
full complexity of the system (Muyzer et al., 1993; Gelsomino et al.,
1999). In fact, in complex communities diversity indices cannot be
estimated accurately from community fingerprint data (Loisel et al.,
2006; Bent and Forney, 2008). Otherwise, the structural changes
detected in soil bacterial community may not necessarily lead to a
reduction in diversity, as it was recently observed for tropical for-
est soil converted to pasture and crops (da C. Jesus et al., 2009).
Therefore, rather than calculating diversity indices we integrated
the bacterial diversity information derived from DGGE fingerprint-
ing using IMD values (Aboim et al., 2008). The IMD reflected the
shifts in the genetic structure of soil bacterial communities as a
result of deforestation for agricultural practices, which is consis-
tent with other studies in tropical or sub-tropical areas (Bonerman
and Triplett, 1997; Bossio et al., 2005; Nogueira et al., 2006; Aboim
et al., 2008; da C. Jesus et al., 2009). This impact on soil microbial
communities may affect the ecological and functional stabilities of
these soils, and particularly the functions in specialized niches, as
reported for tropical agricultural soils in Brazil (Chaer et al., 2009).

The PLFA approach discriminated pristine from agricultural soils
but it was not sensitive enough to differentiate within pristine soils
or between soils under different crops (sugarcane or soybean) as the
DGGE analysis did. Soil cultivation induced an important decrease
in several microbial fatty acids and some bacterial biomarkers were
below the limit of GC-MS detection (~50 pmol), which means that
the population of soil bacteria having those biomarkers was lower
than ~10° cells (Hedrick et al., 2007). Such changes represent low
evenness within the different microbial groups and ultimately,
lower microbial diversity in agricultural than in pristine soils. More-
over, the PLFA profiles of agricultural soils failed to show higher
relative abundance of biomarkers indicative of Gram positive bac-
teria, as it was reported in other agricultural tropical soils (Bossio
et al., 2005). This discrepancy may be due, at least in part, to differ-
ences in the number of PLFA biomarkers analyzed in both studies.

The reduction in total viable microbial biomass (on average 86%)
observed in agricultural soils is consistent with the results obtained
by other researchers (Pankhurst et al., 2003; Acosta-Martinez et al.,
2004; Liu et al., 2006), reflecting the lower supply of labile C and
other nutrients provided by litter and crop residues.

Pristine and agricultural soils also differed in their physiologi-
cal profiles using BDOBS microplates. BDOBS could not discriminate
between the two pristine montane forest soils showing lower speci-
ficity than genetic profiling. Nevertheless, this result likely reflects
the functional similarity of these two habitats. The lower TMR val-
ues obtained in pristine soils compared to agricultural soils with the
background of soil carbon was consistent with the higher microbial
biomass estimated by PLFA. The decrease in TMR observed in agri-
cultural soils, when carbon sources were added, was not observed
in the pristine soils suggesting the predominance of different eco-
types in both microbial communities. Agricultural soils may have a
predominance of r-strategists, which are characterized by their fast
respiratory response to the addition of labile carbon sources, while
K strategists, which respond poorly to these substrates, may pre-
dominate in pristine soils (De Leij etal., 1993). Despite the reduction

in TMR values with carbon source addition, the difference between
agricultural and pristine soils, though smaller, remained for most
of the carbon sources added.

The maximum respiratory activity showed a somewhat con-
tradictory effect with higher values in the agricultural soils that
showed lower microbial biomass. Assuming that substrates were
completely utilized in all samples (a reasonable assumption given
the simple and labile nature of the substrates tested), these results
may reflect a shift in community physiology towards greater
respiration of carbon sources relative to assimilation (i.e., lower
growth yield efficiency, or GYE). Studies with 13C-labeled sub-
strates have shown that GYE is a dynamic property of soils, varying
among different substrates for a given soil (Brant et al., 2006),
and in response to soil management (Thiet et al., 2006). Similarly,
Nogueira et al. (2006) found differences in the respiration of soil
microbial community as response to soil management, which were
related to the ratio between r and K strategist microbial ecotypes.
Non-equilibrated environments showed a higher respiration to
microbial biomass ratio as a result of the dominance of r-strategists
(fewer species with high growth rate) over K strategists (more
species with low growth rate). Because r-strategists evolve more
CO,, per unit of degradable carbon than K strategists it is equivalent
to consider that the former have a lower GYE. Due to the central
role that soil microorganisms have on C cycling, we could spec-
ulate that the activity of microbial communities with low GYE in
agricultural soils might lead to a decrease in the C storage in the
organic matter. However, as suggested by Garland et al. (2010) fur-
ther studies combining the BDOBS approach with direct estimates
of GYE using 13C-labeled substrates are needed to establish if the
new CLPP approach provides significant insight into GYE variations.

Deforestation for cultivation had a profound early impact on
microbial communities in the studied soils. Indeed, soil microbial
community in the recently cleared and cropped soybean soil was
substantially different from that of its adjacent pristine reference
soil, despite these two soils showed minor differences in their
physicochemical parameters. This finding highlights the higher
sensitivity of microbiological attributes compared to physicochem-
ical parameters for detecting changes in land use. Similarly, in
tropical soils, parameters associated with microbial activity were
more responsive to soil management than the soil Cand N contents,
demonstrating their usefulness as indicators of soil quality in the
tropics (Franchini et al., 2007).

The integrated multivariate analysis allowed us to define a min-
imum data set of seven soil quality indicators for discriminating
agricultural soils from pristine reference soils. Five of these vari-
ables were related to attributes of soil microbial communities
(sucrose and valeric acid utilizations, a15:0 and a17:0 fatty acids
abundances and IMD value) and two were measures of soil chem-
ical parameters (pH and OC). Taken together they may provide
indices of soil quality. However, additional surveys and compar-
isons at other locations and agricultural management practices will
be needed to validate this proposed set of soil quality indicators.

5. Conclusions

The multivariate approach we used to analyze soil microbial
communities separated soils primarily related to land use. Our
results indicated that microbial properties are sensitive indica-
tors of changes in soil quality or functioning due to management,
and also highlighted the need to consider a wide variety of both
biochemical and microbiological analyses when comparing the
impacts of agricultural management practices on soil quality.

This study reports, for the first time, a comparative analysis
of the changes in the soil microbial community associated with
deforestation for agriculture in an ecologically relevant region
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of Argentina. Due to the intrinsic environmental fragility of this
region, the change in properties between the cultivated soils and
the non-cultivated pristine soils can be considered a measure of
decreased soil quality. This work can be used as a starting point
for further investigations leading to a better understanding of the
impact of land use changes on soil microbial communities in North-
west Argentina.
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